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The aim of this reported work is to extend a recent, simple and effective
algorithm for the estimation of the probability density function and
cumulative density function to the case of bidimensional random
vectors. The algorithm is based on an information maximisation
approach. The nonlinear bidimensional function involved in the algor-
ithm is adaptively modified during learning and is implemented by
using a bidimensional spline function.

Introduction: Joint probability density function (PDF) estimation is a
very important issue in several interesting areas, such as blind signal pro-
cessing and adaptive data processing, and appealing for the ever increas-
ing use of multisensory signals [1]. In this sense the use of an easy and
fast method of estimation of the joint PDF or the joint cumulative
density function (CDF) becomes a very important task.

Recently a novel, fast and efficient method to estimate CDF and PDF
was presented in [2]. The aim of this Letter is to extend the algorithm
described in [2] to the case of bidimensional random vectors. We
propose the use of a flexible single-input neuron, i.e. a nonlinear bidi-
mensional activation function, the shape of which can be changed
during the learning process following the method shown in [3]. This
nonlinear function is implemented by a cubic bidimensional spline func-
tion. Spline functions consist of a superposition of a certain number of
cubic polynomial pieces, so their shape can be varied during the learning
process. Several experimental results demonstrate the effectiveness of
the proposed approach.

Information maximisation approach: Let x(t) ¼ [x1(t), x2(t)] be a
stationary bidimensional random process with unknown joint probability
density function pX(x) and let y ¼ f (x) ¼ f (x1, x2), where f (. . .) is a
monotone increasing continuous and bidimensional function. As in
[2], the proposed algorithm addresses the problem of maximising the
mutual information between the random vector x and the invertible non-
linear transform y, which is equivalent to maximising the output differen-
tial entropy H( y) [4, 5]. In addition, the proposed bidimensional nonlinear
function f(x1, x2) is implemented in a flexible manner by a bidimensional
spline function in order to change the shape of the nonlinearity during the
learning process. When the algorithm converges, the shape of the nonlinear
function matches the joint CDF of the random vector x. Estimation of the
joint CDF is achieved through the system shown in Fig. 1.
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Fig. 1 System model for joint CDF estimation

The differential entropy of the system output y is simply obtained by
exploiting the relationship between the input and output PDF of a non-
linear transformation pY ( y) ¼ px (x)/ J, where J is the Jacobian of the
transformation [5]. To render the Jacobian a square matrix, we can add a
second variable y ¼ [y, z], where

y = f (x1, x2)

z = 1

2
(x2 − x1)

So the Jacobian matrix becomes
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In this way, the entropy of the network output y is

H(y) = −E{Inpy(y)} = H(x) + E{In|J|} = H(x) + 1
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Equation (2) can be interpreted as the Kullback-Leibler divergence
between the true density of x, px(x) and an arbitrary density given by
1
2 |∂y/∂x1 + ∂y/∂x2|:

−H(y) = E log
2px(x)
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It follows that the divergence between px(x) and 1
2 |∂y/∂x1 + ∂y/∂x2| is

minimised when the entropy H(y) is maximised. Maximisation of (2)
is achieved if 1

2 |∂y/∂x1 + ∂y/∂x2| = px(x), that is f (x1,x2) can be inter-
preted as the joint CDF of the input source x. In this sense, this
system is able to provide an estimate of the joint CDF, hence an estimate
of the joint PDF can be obtained as the derivative of the estimated CDF.
The main issue is to ensure that 1

2 |∂y/∂x1 + ∂y/∂x2| is a density for x.
We show the following lemma, which is an extension of the one-

dimensional case [6].

Lemma 1: Suppose that y ¼ f (x1,x2) is a monotone increasing and dif-
ferentiable function satisfying lim

n�−1
f (n, j) = 0, lim

j�−1
f (n, j) = 0, and

lim
n�+1
j�+1

f (n, j) = 1. Then 1
2 |∂y/∂x1 + ∂y/∂x2| is a density of x.

Proof: We have to show that
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Clearly |∂y/∂x1 + ∂y/∂x2| = ∂y/∂x1 + ∂y/∂x2 because f (x1,x2) is mono-
tone increasing, therefore we obtain
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which completes the proof.

Spline function: The implementation of the flexible function f (x1, x2) is
reached by a spline interpolation scheme [3]. Splines are smooth para-
metric curves defined by interpolation of properly defined control
points collected in a look-up table. Let y ¼ f (x1,x2) be a function to
be estimated. In the general case, given N 2 control points equispaced
on a regular grid of dimension N, the spline surface results as a conca-
tenation of local (N 2 3)2 adjacent surfaces. The spline estimation pro-
vides an approximation f (x1, x2) ≃ ỹ = f̂ (u1, u2, i1, i2) based on two
pairs of parameters (u1,i1) and (u2,i2) directly depending on x1 and x2,
that can be estimated by equation (4) in [2]. In this specific application,
for each input occurrence (�x1,�x2) the spline estimates f (�x1,�x2) by using
16 control points selected inside the look-up table [3]. Two points are
the adjacent control points on the left side of each �x1 and �x2, while
two other points are the control points on the right side. Hence the
output of a generic input (�x1,�x2) is simply obtained by the following
matrix expression [3]:

�y = f (�x1,�x2) = T2M(T1MQi1,i2 )
T (5)

where Tk = [u3
k , u2

k , uk , 1], k = 1, 2,Qi1,i2 is the matrix that collects the
16 local control points qi,k and M is a 4 × 4 matrix which selects which
spline base is used, typically B-spline or Catmull-Rom spline (CR-
spline) [3]. To ensure the monotonously increasing characteristic of
the overall function, the additional constraint qi,k , qi+1,k must be
imposed.

Algorithm derivation: The learning algorithm is derived by maximising
(2) and using the expression (5) for the function f (x1,x2). The learning
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rule is local and involves the adaptation of only 16 control points:
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where Mm is a matrix in which all the elements are zero, except
the mth column which is equal to the mth column of the M matrix
and Ṫk = [3u2

k , 2uk , 1, 0], k = 1, 2. The relations in (6) are
obtained using the approximation of the expectation operator
E{g(x)} ≃ g(x). The final learning rule for the adaptation of the
spline control points using the stochastic gradient algorithm, at
instant l + 1, is simply

Qi1+m1,i2+m2 (l + 1) = Qi1+m1,i2+m2 (l) + hDQi1+m1,i2+m2 (l) (7)

where h is the learning rate, a small and positive constant.

Results: The proposed approach was tested in blind estimation of the
joint CDF and joint PDF of a random vector x. Some experimental
tests are shown. In the first test a random vector of 10000 samples
with a jointly Gaussian distribution with zero mean and unitary variance
is chosen. This vector is generated using the random function in
MATLABw. We adopt a CR-spline with N ¼ 43 control points and a
learning rate h ¼ 1027. The estimated joint CDF and joint PDF are
shown in Fig. 2, which clearly shows the effectiveness of the learning.
In the second test a 16 PSK signal of 10000 samples is chosen. The par-
ameters are the same as in the previous example. This test shows the
ability of the proposed architecture to estimate the joint PDF, the 16
peaks, in Fig. 3. The Figure confirms the effectiveness of the learning.
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Fig. 2 Data scatterplot (top left), CDF estimation (top right) and PDF
estimation (bottom) of joint Gaussian random vector
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Fig. 3 Data scatterplot (left) and estimated PDF (right) of 16-PSK source
signal

Conclusion: A novel, fast and efficient method to estimate joint cumu-
lative density function and joint probability density function is pre-
sented. The proposed approach is based on the bidimensional spline
function: the shape of this surface is adaptively changed during the
learning process by maximising the information of a transformed
version of the input signal and finally reproducing the profile of the
desired functions. Some experimental results demonstrate the effective-
ness of the proposed approach.
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