
Neural Networks 80 (2016) 43–52
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Distributed semi-supervised support vector machines
Simone Scardapane a,∗, Roberto Fierimonte a, Paolo Di Lorenzo b, Massimo Panella a,
Aurelio Uncini a
a Department of Information Engineering, Electronics and Telecommunications (DIET), ‘‘Sapienza’’ University of Rome,
Via Eudossiana 18, 00184 Rome, Italy
b Department of Engineering, University of Perugia, Via G. Duranti 93, 06125, Perugia, Italy

a r t i c l e i n f o

Article history:
Received 23 October 2015
Received in revised form 12 April 2016
Accepted 17 April 2016
Available online 27 April 2016

Keywords:
Semi-supervised learning
Support vector machine
Distributed learning
Networks

a b s t r a c t

The semi-supervised support vector machine (S3VM) is a well-known algorithm for performing semi-
supervised inference under the large margin principle. In this paper, we are interested in the problem
of training a S3VM when the labeled and unlabeled samples are distributed over a network of
interconnected agents. In particular, the aim is to design a distributed training protocol over networks,
where communication is restricted only to neighboring agents and no coordinating authority is present.
Using a standard relaxation of the original S3VM, we formulate the training problem as the distributed
minimization of a non-convex social cost function. To find a (stationary) solution in a distributed
manner, we employ two different strategies: (i) a distributed gradient descent algorithm; (ii) a recently
developed framework for In-Network Nonconvex Optimization (NEXT), which is based on successive
convexifications of the original problem, interleaved by state diffusion steps. Our experimental results
show that the proposed distributed algorithms have comparable performance with respect to a
centralized implementation, while highlighting the pros and cons of the proposed solutions. To the date,
this is the first work that paves the way toward the broad field of distributed semi-supervised learning
over networks.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Semi-supervised learning (SSL) algorithms are a family of tech-
niques for performing inference in the presence of both labeled
and unlabeled data (Chapelle, Schölkopf, & Zien, 2006). Among
them, in the binary classification setting the semi-supervised sup-
port vector machine (S3VM) has attracted a large amount of atten-
tion over the last decades (Chapelle, Sindhwani, & Keerthi, 2008).
The S3VM is based on the idea of minimizing the training error
and maximizing the margin over both labeled and unlabeled data,
whose labels are included as additional variables in the optimiza-
tion problem. Since its first practical implementation in Joachims
(1999), inspired by previous work on transductive learning by
Vapnik (1998), numerous researchers have proposed alternative
solutions for solving the resulting mixed integer optimization

∗ Corresponding author. Tel.: +39 06 44585495; fax: +39 06 4873300.
E-mail addresses: simone.scardapane@uniroma1.it (S. Scardapane),

robertofierimonte@gmail.com (R. Fierimonte), paolo.dilorenzo@unipg.it
(P. Di Lorenzo), massimo.panella@uniroma1.it (M. Panella),
aurelio.uncini@uniroma1.it (A. Uncini).

http://dx.doi.org/10.1016/j.neunet.2016.04.007
0893-6080/© 2016 Elsevier Ltd. All rights reserved.
problem, including branch and bound algorithms (Chapelle, Sind-
hwani, & Keerthi, 2006), convex relaxations (Chapelle & Zien, 2005;
Li, Tsang, & Kwok, 2013), convex–concave procedures (Fung &
Mangasarian, 2001), and others. It has been applied to a wide
variety of practical problems, such as text inference (Joachims,
1999), and it has given birth to numerous other algorithms, in-
cluding semi-supervised least-square SVMs (Adankon, Cheriet, &
Biem, 2009), and semi-supervised random vector functional-link
networks (Scardapane, Comminiello, Scarpiniti, & Uncini, in press).

In this paper, we are interested in designing algorithms for
solving the S3VM optimization problem, in the case where the
training data is distributed across a network of interconnected
agents (Scardapane, Wang, Panella, & Uncini, 2015). In the fully
supervised case, this is a well-known scenario, which has been
investigated extensively in multiple research fields, including
peer-to-peer (P2P) (Ang, Gopalkrishnan, Hoi, & Ng, 2013) and sen-
sor networks (Barbarossa, Sardellitti,& Di Lorenzo, 2014; Predd,
Kulkarni, & Poor, 2006), robotic swarms, and many others. In
all of these settings, the underlying network of agents is gen-
erally unstructured, and no centralized authority can coordinate
the overall process. Thus, distributed training algorithms are de-
signed based on simple local exchanges of information among

http://dx.doi.org/10.1016/j.neunet.2016.04.007
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2016.04.007&domain=pdf
mailto:simone.scardapane@uniroma1.it
mailto:robertofierimonte@gmail.com
mailto:paolo.dilorenzo@unipg.it
mailto:massimo.panella@uniroma1.it
mailto:aurelio.uncini@uniroma1.it
http://dx.doi.org/10.1016/j.neunet.2016.04.007

44 S. Scardapane et al. / Neural Networks 80 (2016) 43–52
neighboring agents. A large number of decentralized algorithms
have been developed for training a supervised SVM in such a dis-
tributed scenario (Forero, Cano, & Giannakis, 2010; Lu, Roychowd-
hury, & Vandenberghe, 2008; Navia-Vázquez, Gutierrez-Gonzalez,
Parrado-Hernández, & Navarro-Abellan, 2006), and they are briefly
summarized in the next section.

To the best of our knowledge, however, there is a lack of
distributed training algorithms for the SSL case over networks.
Indeed, this problem has been addressed only for specific cases,
such as localization in a WSN (Chen, Wang, Sun, & Shen, 2011).
Nonetheless, as we argue in Fierimonte, Scardapane, Uncini, and
Panella (submitted for publication), there is a large number of
realistic applications where the agents can benefit from the
inclusion of additional unlabeled data in the training process. As
an example, consider a distributed medical application, where
multiple clinical institutions possess similar databases, but privacy
concerns do not allow them to share it with a centralized
institution (Clifton, Kantarcioglu, Vaidya, Lin, & Zhu, 2002). In
this case, labeled data is generally scarce, while each institution
has access to a large amount of unlabeled samples. Using
currently available distributed algorithms, however, would imply
discarding these unlabeled databases, resulting in a possible loss of
generalization accuracy.

To simplify our derivation, in this paper, we focus on the linear
S3VM formulation, whose decision boundary corresponds to an
hyperplane in the input space. It is known that non-linear decision
boundaries can be obtainedwith the use of kernel functions. In that
case, however, the resulting SVMmodel is expressed in terms of all
examples, which in a decentralized setting are distributed among
the different agents. This is a notoriously complex problem (Predd
et al., 2006), which in many contexts hinders the applicability of
the resulting algorithms. In an alternative publication (Fierimonte
et al., submitted for publication), we have explored the problem
of training a semi-supervised Laplacian SVM using a distributed
computation of the underlying kernel matrix. However, the
resulting algorithm requires a large amount of computational
and/or communication resources. The algorithms presented in this
paper, instead, can be implemented even on agents with stringent
requirements in terms of power, such as sensors in a WSN. At the
same time, limiting ourselves to a linear decision boundary can be
reasonable, as the linear S3VM can performwell in a large range of
settings, due to the scarcity of labeled data (Chapelle et al., 2008).

Specifically, starting from the smooth approximation to the
original S3VM presented in Chapelle and Zien (2005), we show
that the distributed training problem can be formulated as the
joint minimization of a sum of non-convex cost functions. This is a
complex problem, which has been investigated only very recently
in the distributed optimization literature (Bianchi & Jakubowicz,
2013; Di Lorenzo & Scutari, in press). In our case, we build on
two different solutions. The first one is based on the idea of
diffusion gradient descent (DGD) (Di Lorenzo & Sayed, 2013;
Sayed, 2014a, 2014b), arisen from previous work in the context
of distributed filtering applications (Lopes & Sayed, 2008). The
main idea of DGD is to interleave gradient descent steps at every
node,with local averaging of the estimates. The resulting algorithm
leads to an extremely efficient implementation. Nevertheless,
since it is a gradient-based algorithm exploiting only first order
information of the objective function, it generally suffers from
slow practical convergence speed, especially in the case of non-
convex and large-scale optimization problems. Recently, it was
showed in Di Lorenzo and Scutari (in press), Facchinei, Scutari,
and Sagratella (2015) and Scutari, Facchinei, Song, Palomar,
and Pang (2014) that exploiting the structure of nonconvex
functions by replacing their linearization (i.e., their gradient) with
a ‘‘better’’ approximant can enhance practical convergence speed.
Thus, we propose a distributed algorithm based on the recently
proposed In-Network Successive Convex Approximation (NEXT)
framework (Di Lorenzo & Scutari, in press). The method hinges
on successive convex approximation techniques while leveraging
dynamic consensus (Zhu & Martínez, 2010) as a mechanism to
distribute the computation among the agents as well as diffuse
the needed information over the network. Both algorithms are
provably convergent to stationary points of the non-convex
optimization problem. Moreover, as shown in our experimental
results, NEXT exhibits a faster practical convergence speed with
respect to DGD, which is paid by a larger computation cost per
iteration.

To summarize, our main contributions with respect to the
current literature on distributed learning are two-fold. Firstly, to
the best of our knowledge, this is the first work dealing explicitly
with (fully) distributed implementations of semi-supervised
routines and, more specifically, semi-supervised SVMs, paving the
way to a large number of possible domains which can benefit from
the availability of these techniques. Additionally, the present work
is one of the first successful applications of optimization protocols
explicitly designed for distributed non-convex costs, while the
majority of works on distributed learning has focused on models
giving rise to convex optimization problems.

The rest of the paper is structured as follows. Section 2 goes
briefly over previous works on distributed SVMs in the fully
supervised case. Then, Section 3 introduces the S3VM model
together with the approximation presented in Chapelle and Zien
(2005). In Section 4, we first formulate the distributed training
problem for S3VMs, and subsequently we derive our two proposed
solutions. Then, Section 5 details an extensive set of experimental
results and, finally, Section 6 concludes the paper.

Notation

In the rest of the paper, vectors are denoted by boldface
lowercase letters, e.g. a, while matrices are denoted by boldface
uppercase letters, e.g. A. All vectors are assumed column vectors.
Symbol ai denotes the ith element of vector a, and Aij the (i,
j) entry of the matrix A. The operator ∥·∥2 is the standard L2
norm on an Euclidean space. Finally, the notation a[n] is used
to denote dependence with respect to a time-instant n in an
iterative procedure. Other notation is introduced in the text when
appropriate.

2. Related works

We start by briefly reviewing some works on distributed SVM
algorithms in the fully supervised case. Similar overviews can be
found in Scardapane, Wang, and Panella (in press, Section 2.1) and
Wang and Zhou (2012). Initial works in this field were sparked
by realizing that the set of support vectors represents an efficient
way of ‘compressing’ data to be sent among the neighbors. In
practice, this is complicated by the fact that each agent has no
principledway of knowingwhether a specific example is a support
vector of the full problem. Thus, in Navia-Vázquez et al. (2006)
the real set of support vectors is approximated by a specific set
chosen a priori, whose weights are updated based on a least-
square procedure. On the contrary, Lu et al. (2008) solve the
problem considering the real set of support vectors, with assured
convergence in a finite number of steps. Both approaches, however,
are hindered by the necessity of sending the examples throughout
the network on a Hamiltonian cycle. The most efficient procedure
up-to-date is presented in Forero et al. (2010), where the problem
is recast asmultiple convex subproblems at every node, and solved
with the use of the alternating direction method of multipliers
(ADMM), an efficient procedure for distributed optimization of
convex cost functions. Indeed, ADMM is among the most widely

S. Scardapane et al. / Neural Networks 80 (2016) 43–52 45
used methods for distributed learning of neural-like architectures,
and it has been used successfully for linear models (Mateos,
Bazerque, & Giannakis, 2010), random-vector functional links
networks (Scardapane et al., 2015), recurrent neural networks
(Scardapane, Wang et al., in press) and others (see also the survey
in Boyd, Parikh, Chu, Peleato, & Eckstein, 2011).

It isworthnoting that alternative approaches exploiting specific
features of WSN and P2P networks were investigated in Ang
et al. (2013), Beferull-Lozano and Tsakalides (2006) and Hensel
and Dutta (2009). Additionally, for linear SVMs there has also
been interest in applying other routines from the distributed
optimization field. Among these,we can cite the randomprojection
algorithm (Lee & Nedic, 2013), dual coordinate ascent (Jaggi et al.,
2014), and the box-constrained QP (Lee & Roth, 2015).

3. Semi-supervised support vector machines

Let us consider the standard SSL problem, where we are
interested in learning a binary classifier starting from L labeled
samples (xi, yi)Li=1 and U unlabeled samples


x′

i

U
i=1. Each input

is a d-dimensional real vector xi ∈ Rd, while each output can
only take one of two possible values yi ∈ {−1,+1}. While SVMs
are specifically designed for binary problems, it is known that
any multi-class problem can be transformed into a set of binary
classification problems using standard techniques, e.g. one-versus-
all or all-versus-all (Rifkin & Klautau, 2004). These techniques are
also straightforward to apply in the distributed scenario, since
the different binary problems can be solved in parallel (Graf,
Cosatto, Bottou, Dourdanovic, & Vapnik, 2004).1 The linear S3VM
optimization problem can be formulated as (Chapelle & Zien, 2005)

min
w,b,ŷ

C1

2L

L
i=1

l (yi, f (xi))+
C2

2U

U
i=1

l(ŷi, f

x′

i


)+

1
2

∥w∥
2
2 , (1)

where f (x) = wTx + b, ŷ ∈ {−1,+1}U is a vector of unknown
labels, l(·, ·) is a proper loss function, C1, C2 > 0 are coefficients
weighting the relative importance of labeled and unlabeled
samples, and ∥w∥

2
2 is the standard regularization term (Kurková,

2005). The main difference with respect to the classical SVM
formulation is the inclusion of the unknown labels ŷ as variables of
the optimization problem. This makes Problem (1) a mixed integer
optimization problem, whose exact solution can be computed only
for relatively small datasets, e.g. using standard branch-and-bound
algorithms (Chapelle, Sindhwani et al., 2006). We note that, for
C2 = 0, we recover the standard SVM formulation. The most
common choice for the loss function is the hinge loss, given by

l (y, f (x)) = max (0, 1 − yf (x))p , (2)

where p ∈ N. In this paper, we use the choice p = 2, which leads to
a smooth and convex function. Additionally, it is standard practice
to introduce an additional constraint in the optimization problem,
so that the resulting vector ŷ has a fixed proportion r ∈ [0, 1] of
positive labels:

1
U

U
i=1

max

0, ŷi


= r. (3)

This constraint helps achieve a balanced solution, especially when
the ratio r reflects the true proportion of positive labels in the un-
derlying dataset.

1 For the interested reader, a limited number of works considered distributed
multiclass versions of the SVM, e.g. Lodi, Aanculef, and Sartori (2010). While they
can represent an interesting point for further research, their applicability in SSL
scenarios is currently very limited.
Fig. 1. For a fixed choice ofw and b, max

0, 1 − ŷif (x′

i)
2

= max

0, 1 − |f (x′

i)|
2 .

This is shown in blue for varying values of f (x′

i), while in dashed red we show the
approximation given by exp


−5f (x′

i)
2

. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

A common way of solving Problem (1) stems from the fact that,
for a fixed w and b, the optimal ŷ is given in closed form by

ŷi = sign(wTx′

i + b), i = 1, . . . ,U .

Exploiting this fact, it is possible to devise a continuous approxi-
mation of the cost function in (1) (Chapelle et al., 2008). In particu-
lar, to obtain a smooth optimization problem solvable by standard
first-order methods, Chapelle and Zien (2005) propose to replace
the hinge loss over the unknown labels with the approximation
given by exp


−sf (x)2


, s > 0. In the following, we choose in par-

ticular s = 5, as suggested by Chapelle et al. (2008). A visual ex-
ample of the approximation is illustrated in Fig. 1. The resulting
∇ S3VM optimization problem writes as

min
w,b

C1

2L

L
i=1

l (yi, f (xi))+
C2

2U

U
i=1

exp

−sf (x′

i)
2

+
1
2

∥w∥
2
2 . (4)

Problem (4) does not incorporate the constraint in (3) yet. A
possible way to handle the balancing constraint in (3) is a
relaxation that uses the following linear approximation (Chapelle
& Zien, 2005):

1
U

U
i=1

wTx′

i + b = 2r − 1, (5)

which can easily be enforced for a fixed r by first translating the
unlabeled points so that their mean is 0, and then fixing the offset
b as b = 2r − 1. The resulting problem can then be solved using
standard first-order procedures.

4. Distributed learning for S3VM

In this section, we first formulate a distributed optimization
problem for a ∇S3VM over a network of agents in Section 4.1.
Then, we present two alternative methods for solving the
overall optimization problem in a fully decentralized fashion in
Sections 4.2 and 4.3.

4.1. Formulation of the problem

For the rest of this paper, we assume that labeled and unlabeled
training samples are not available on a single processor. Instead,
they are distributed over a network of N agents. In particular, we
assume that the kth node has access to Lk labeled samples, and Uk

unlabeled ones, such that
N

k=1 Lk = L and
N

k=1 Uk = U .
The network of the agents is modeled as a directed graph G =

(V, E), whereV = {1, . . . ,N} is the vertex (i.e., agent) set, and E is

46 S. Scardapane et al. / Neural Networks 80 (2016) 43–52
the set of edges. The neighborhood of agent k (excluding node k) is
defined asNk = {t | (t, k) ∈ E}; it sets the communication pattern
between single-hop neighbors, i.e. agents in Nk can communicate
with node k. We introduce the weights Ckt matching the graph
G, i.e. Ckt > 0 if t ∈ Nk or t = k. We also define the matrix
C , (Ckt)

N
k,t=1. Specific ways of choosing these weights will be

discussed in the following. We make the following assumption on
the network connectivity.

Assumption 1. The graph G is strongly connected. Furthermore,
the weight matrix C satisfies C 1 = 1 and 1TC = 1T .

Given the connectivity pattern among agents, we are interested
in devising distributed solutions in the following setting: (i) agents
know their local functions and data only; and (ii) only inter-
node communications between single-hop neighbors are possible.
This setting is particularly important in all the applications where
data are naturally distributed over the network, and sharing
local information with a central processor is either unfeasible or
not economical/efficient, owing to the large size of the network
and volume of data, time-varying network topology, energy
constraints, and/or privacy issues.

Following the rationale introduced in Section 3, the distributed
∇ S3VM problem can be cast as

min
w

N
k=1

lk(w)+

N
k=1

gk(w)+ r(w), (6)

where we have defined the following shorthands:

lk(w) =
C1

2L

Lk
i=1

l

yk,i, f (xk,i)


, (7)

gk(w) =
C2

2U

Uk
i=1

exp

−sf (x′

k,i)
2 , (8)

r(w) =
1
2

∥w∥
2
2 . (9)

In the previous equations, we use the double subscript (k, i) to
denote the ith sample available at the kth node, and we assume
that the bias b has been fixed a priori using the strategy detailed in
the previous section. In a distributed setting, this requires that each
agent knows the mean of all unlabeled points given by 1

U

U
i=1 x

′

i .
This can easily be achieved, before starting the training process,
with a number of different in-network algorithms. For example,
the agents can compute the average using a standard consensus
procedure (Barbarossa et al., 2014), push-sum protocols (Hensel
& Dutta, 2009) in a P2P network, or a number of alternative
techniques.

4.2. Solution 1: distributed gradient descent

The first solution is based on theDGDprocedure (Sayed, 2014b),
i.e. an algorithm for solving general distributed unconstrained
optimization problems of the form:

min
w

N
k=1

Jk(w), (10)

where Jk(·) is the local (smooth) cost function of the kth agent.
Denoting bywk[n] the local estimate of the kth node at time n, the
DGD method proceeds iteratively as

ψk = wk[n] − α[n]∇Jk(w), (11)

wk[n + 1] =

N
t=1

Cktψt , (12)
Algorithm1Distributed∇S3VMusing a diffusion gradient descent
procedure.
Input: Regularization factors C1, C2, maximum number of itera-

tions T .
1: Initialization:
2: wk[0] = 0, k = 1, . . . ,N .
3: for n from 0 to T do
4: for k from 1 to N do in parallel
5: Compute auxiliary variable ψk using (13).
6: Combine estimates aswk[n + 1] =

N
t=1 Cktψt .

7: end for
8: end for

where α[n] is a (possibly time-varying) step-size sequence, ∇(·)
denotes the gradient operator, and Ckt are the connectivityweights
of the network. This method can be seen as the combination of
local descent steps, see (11), followed by variable exchanges and
averaging of information among neighbors, see (12).

Distributed gradient algorithms as in (11)–(12) are largely used
in the fields of distributed optimization (Nedić & Ozdaglar, 2009;
Nedić, Ozdaglar, & Parrilo, 2010; Tsitsiklis, Bertsekas, & Athans,
1986), distributed stochastic optimization (Chen & Sayed, 2012,
2013), and adaptive filtering (Cattivelli, Lopes, & Sayed, 2008;
Lopes & Sayed, 2008), among others. All the previous art on
DGD focused on the solution of convex versions of problem (10).
In our case, the gk(w) are non-convex, and the analysis in the
aforementioned papers cannot be used. However, convergence of
a similar family of algorithms in the case of non-convex (smooth)
cost functions has been recently studied in Bianchi and Jakubowicz
(2013).

Customizing the DGD method in (11)–(12) to Problem (6), we
obtain the following local update for the kth agent:

ψk = wk[n] − αk[n]

×


∇lk(wk[n])+ ∇gk(wk[n])+

1
N

∇r(wk[n])

. (13)

Note that we have included a factor 1
N in (13) in order to be

consistentwith the formulation in (10). Defining themarginmk,i =

yk,if (xk,i), we can easily show that

∇lk(w) = −
C1

L

Lk
i=1

I(1 − mk,i) · mk,i

1 − mk,i


, (14)

∇gk(w) = −s
C2

U

Uk
i=1

exp

−sf (x′

k,i)
2 f (x′

k,i)x
′

k,i, (15)

∇r(w) = w, (16)

where I(·) is the indicator function defined for a generic scalar
o ∈ R as

I(o) =


1 if o ≤ 0
0 otherwise.

The overall algorithm is summarized in Algorithm 1. Its conver-
gence properties are illustrated in following theorem.

Theorem 1. Let {wk[n]}n be the sequences generated by Algorithm 1,
and let w̄[n] =

1
N

N
k=1 wk[n] be its average across the agents.

Under Assumption 1, let us select the step-size sequence {α[n]}n
such that (i) α[n] ∈ (0, 1], for all n, (ii)


∞

n=0 α[n] = ∞; and
(iii)


∞

n=0 α[n]2 < ∞. Then, if the sequence {w̄[n]}n is bounded,2

2 Note that this condition is not restrictive in practical implementations. Indeed,
one can always limit the behavior of the algorithm using a finite (but arbitrarily
large) box constraint that guarantees the boundness of the sequence {w̄[n]}n , and
thus the convergence of the method.

S. Scardapane et al. / Neural Networks 80 (2016) 43–52 47
(a) [convergence]: all its limit points are stationary solutions of
problem (6); (b) [consensus]: all the sequences wk[n] asymptoti-
cally agree, i.e. limn→+∞ ∥wk[n] − w̄[n]∥2 = 0, k = 1, . . . ,N.

Proof. See Bianchi and Jakubowicz (2013). �

4.3. Solution 2: in-network successive convex approximations

The DGD algorithm is extremely efficient to implement,
however, as we discussed in Section 1, its convergence is often
sub-optimal due to two main reasons. First, the update in (13)
considers only first order information and does not take into
account the fact that the local cost function has some hidden
convexity (since it is composed by the sum of a convex term plus
a non-convex term) that one can properly exploit. Second, each
agent k obtains information on the cost functions Jt(·), t ≠ k,
only in a very indirect way through the averaging step in (11).
In this section, we use a recent framework for in-network non-
convex optimization from Di Lorenzo and Scutari (in press), which
exploits the structure of nonconvex functions by replacing their
linearization (i.e., their gradient)with a ‘‘better’’ approximant, thus
typically resulting in enhanced practical convergence speed. In this
section we customize the NEXT algorithm from Di Lorenzo and
Scutari (in press) to our case, and we refer to the original paper
for more details.

The main idea of NEXT is to parallelize the problem in (6) such
that, at each agent, the original (global) non-convex cost function is
replaced with a strongly convex surrogate that preserves the first
order conditions (Di Lorenzo & Scutari, in press). To this aim, we
associate to agent k the surrogate Fk(w;wk[n]), which is obtained
by (i) keeping unaltered the local convex function lk(w) and the
regularization function r(w); (ii) linearizing the local non-convex
cost gk(w) and all the other (non-convex and unknown) terms
around the current local iterate wk[n]. As a result, the surrogate
at node k takes the form:

Fk(w;wk[n]) = lk(w)+ g̃k(w;wk[n])+ r(w)

+ πk(wk[n])T (w − wk[n]) , (17)

where

g̃k(w;wk[n]) = gk(wk[n])+ ∇gT
k (wk[n]) (w − wk[n]) , (18)

and πk(wk[n]) is defined as

πk(wk[n]) =


t≠k

∇ht(wk[n]), (19)

with ∇hk(·) = ∇lk(·) + ∇gk(·). Clearly, the information in (19)
related to the knowledge of the other cost functions is not available
at node k. To cope with this issue, the NEXT approach consists
in replacing πk(wk[n]) in (17) with a local estimate π̃k[n] that
asymptotically converges to πk(wk[n]), thus considering the local
approximated surrogate F̃(w;wk[n], π̃k[n]) given by

F̃k(w;wk[n], π̃k[n]) = lk(w)+ g̃k(w;wk[n])+ r(w)

+ π̃k[n]T (w − wk[n]) . (20)

In the first phase of the algorithm, each agent solves a convex
optimization problem involving the surrogate function in (20),
thus obtaining a new estimate w̃k[n]. Then, an auxiliary variable
zk[n] is computed as a convex combination of the current estimate
wk[n] and the new w̃k[n], as

zk[n] = wk[n] + α[n]

w̃k[n] − wk[n]


, (21)

where α[n] is a possibly time-varying step-size sequence. This
concludes the optimization phase of NEXT. The consensus phase
of NEXT consists of two main steps. First, to achieve asymptotic
agreement among the estimates at different nodes, each agent
updates its local estimate combining the auxiliary variables from
the neighborhood, i.e., for all k,

wk[n + 1] =

N
t=1

Cktzt [n]. (22)

This is similar to the diffusion step in (12). Second, the update of
the local estimate π̃k[n] in (20) is computed in two steps: (i) an
auxiliary variable vk[n] is updated through a dynamic consensus
(Zhu & Martínez, 2010) step as

vk[n + 1] =

N
t=1

Cktvt [n]

+


∇hk(wk[n + 1])− ∇hk(wk[n])


; (23)

(ii) the variable π̃k[n] is updated as

π̃k[n + 1] = Nvk[n + 1] − ∇hk(wk[n + 1]). (24)
The steps of the NEXT algorithm for Problem (6) are described
in Algorithm 2. Its convergence properties are described by a
Theorem completely similar to Theorem 1, and the details on the
proof can be found in Di Lorenzo and Scutari (in press).

Algorithm 2 Distributed ∇S3VM using the In-Network Convex
Approximation framework.
Input: Regularization factors C1, C2, maximum number of itera-

tions T .
1: Initialization:
2: wk[0] = 0, k = 1, . . . ,N .
3: vk[0] = ∇hk(wk[0]), k = 1, . . . ,N .
4: π̃k[0] = (N − 1)vk[0], k = 1, . . . ,N .
5: for n from 0 to T do
6: for k from 1 to N do in parallel
7: Solve the local optimization problem:

w̃k[n] = argmin F̃k(w;wk[n], π̃k[n]) .
8: Compute zk[n] using (21).
9: end for

10: for k from 1 to N do in parallel
11: Perform consensus step in (22).
12: Update auxiliary variable using (23).
13: Set π̃k[n + 1] as (24).
14: end for
15: end for

5. Experimental results

5.1. Experimental setup

We tested the proposed distributed algorithms on three semi-
supervised learning benchmarks, whose overview is given in
Table 1. For more details on the datasets see Chapelle, Schölkopf
et al. (2006) for the first two, and Mierswa and Morik (2005) for
GARAGEBAND.
– G50C is an artificial dataset, wherein labels correspond to

Gaussians in a 50-dimensional input space. The dataset is
designed such that the Bayes error is 5%.

– PCMAC corresponds to distinguishing among pc-related and
mac-related texts in the 20 Newsgroup dataset.3

– GARAGEBAND is a music classification dataset, whose input
is given by 49 features extracted according to the procedure

3 http://qwone.com/jason/20Newsgroups/.

http://qwone.com/jason/20Newsgroups/

48 S. Scardapane et al. / Neural Networks 80 (2016) 43–52
Table 1
Description of the datasets. The fourth and fifth columns denote the size of the training and unlabeled datasets, respectively.

Name Features Instances L U Ref.

G50C 50 550 40 455 (Chapelle, Schölkopf et al., 2006)
PCMAC 7511 1940 40 1700 (Chapelle, Schölkopf et al., 2006)
GARAGEBAND 44 790 40 670 (Mierswa & Morik, 2005)
Table 2
Optimal values of the parameters used in the experiments. In the first group are reported the values of the regularization coefficients for the three models, averaged over
the 150 repetitions. In the following groups are reported the values of the initial step-size and of the diminishing factor for C-∇S3VM, DG-∇S3VM and NEXT-∇S3VM,
respectively.

Dataset C1 C2 αC
0 δC αDG

0 δDG αNEXT
0 δNEXT

G50C 1 1 1 0.55 1 0.55 0.6 0.8
PCMAC 100 100 0.1 0.55 1 0.9 0.5 0.8
GARAGEBAND 2 5 0.09 0.8 0.1 0.1 0.05 0.55
detailed in Mierswa and Morik (2005). The original dataset
comprises 9 differentmusical genres. In order to obtain a binary
classification task, we select the two most prominent ones,
namely ‘rock’ and ‘pop’, and discard the rest of the dataset.

For G50C and GARAGEBAND, input variables are normalized
between −1 and 1. The experimental results are computed over
a 10-fold cross-validation, and all the experiments are repeated 15
times. For each repetition, the training folds are partitioned in one
labeled and one unlabeled datasets, according to the proportions
given in Table 1. Results are then averaged over the 150 repetitions.

We have implemented the proposed algorithms in an open-
source MATLAB toolbox.4 Since in our implementation we are not
concerned with the analysis of communication over a realistic
network, we implement a serial version of the code to perform
the simulations, in which the network is simulated artificially. We
compare the following models:

– LIN-SVM: this is a fully supervised SVM with a linear kernel,
trained only on the labeled data. The model is trained using the
LIBSVM library (Chang & Lin, 2011).

– RBF-SVM: similar to before, but a RBF kernel is used instead.
The parameter for the kernel is set according to the internal
heuristic of LIBSVM.

– C-∇S3VM: this is a centralized ∇ S3VM trained on both
the labeled and the unlabeled data using a gradient descent
procedure.

– DG-∇S3VM: in this case, training data (both labeled and
unlabeled) is distributed evenly across the network, and the
distributed model is trained using the diffusion gradient
algorithm detailed in Section 4.2.

– NEXT-∇S3VM: data is distributed over the network as before,
but the model is trained through the use of the NEXT
framework, as detailed in Section 4.3. The internal optimization
problem in (20) is solved using a standard gradient descent
procedure.

For C-∇S3VM, DG-∇S3VM and NEXT-∇S3VM we set s = 5 and
a maximum number of iterations T = 500. In order to obtain
a fair comparison between the algorithms, we also introduce a
stopping criterion, i.e. the algorithms terminate when the norm
of the gradient of the global cost function in (6) at the current
iteration is less than 10−5. Clearly, this is only for comparison
purposes, and a truly distributed implementation would require
a more sophisticated mechanism, which however goes outside
the scope of the present paper. The same value for the threshold
is set for the gradient descent algorithm used within the NEXT
framework to optimize the local surrogate function in (20). In this

4 https://bitbucket.org/robertofierimonte/code-distributed-s3vm.
case, we let the gradient run for a maximum of T = 50 iterations.
We note that, in general, we do not need to solve the internal
optimization problem to optimal accuracy, as convergence of NEXT
is guaranteed as long as the problems are solved with increasing
accuracy for every iteration (Di Lorenzo & Scutari, in press).

We searched the values of C1 and C2 by executing a 5-fold cross-
validation in the interval {10−5, 10−4, . . . , 103

} using C-∇S3VM
as in Chapelle and Zien (2005). The values of these parameters
are then shared with DG-∇S3VM and NEXT-∇S3VM. For all the
models, included NEXT’s internal gradient descent algorithm, the
step-size α is chosen using a decreasing strategy given by

α[n] =
α0

(n + 1)δ
, (25)

where α0, δ > 0 are set by the user. In particular, this step-size
sequence satisfies the convergence conditions for both the DGD
algorithm and NEXT, see Theorem 1. After preliminary tests, we
selected for every model the values of α0 and δ that guarantee
the fastest convergence. The optimal values of the parameters are
shown in Table 2.

Thenetwork topologies are undirected andgenerated according
to the so-called ‘Erdős–Rényi model’ (Newman, 2010), such that
every edge has a 25% probability of appearing. The only constraint
is that the network is connected. The topologies are generated at
the beginning of the experiments and kept fixed during all the
repetitions.

We choose the weight matrix C using the Metropolis–Hastings
strategy (Lopes & Sayed, 2008):

Ckj =



1
max{dk, dj} + 1

k ≠ j, {k, j} ∈ E

1 −


j∈Nk

1
max{dk, dj} + 1

k = j

0 k ≠ j, {k, j} ∉ E

(26)

where dk is the degree of node k and Nk is the set of nodes’ indexes
directly connected to node k. This choice of the weight matrix
satisfies the convergence conditions for both the distributed
approaches, see Assumption 1.

5.2. Results and discussion

The first set of experiments consists in analyzing the perfor-
mance of C-∇S3VM, when compared to a linear SVM and RBF-
SVM trained only on the labeled data. While these results are well
known in the semi-supervised literature, they allowus to quantita-
tively evaluate the performance of C-∇S3VM, in order to provide
a coherent benchmark for the successive comparisons. Results of
this experiment are shown in Table 3.

https://bitbucket.org/robertofierimonte/code-distributed-s3vm

S. Scardapane et al. / Neural Networks 80 (2016) 43–52 49
(a) Objective function (G50C). (b) Gradient norm (G50C).

(c) Objective function (PCMAC). (d) Gradient norm (PCMAC).

(e) Objective function (GARAGEBAND). (f) Gradient norm (GARAGEBAND).

Fig. 2. Convergence behavior of DG-∇S3VM and NEXT-∇S3VM, compared to C-∇S3VM. The panels on the left show the evolution of the global cost function, while the
panels on the right show the evolution of the squared norm of the gradient.
We can see that, for all the datasets, C-∇S3VM outperforms
standard SVMs trained only on labeled data, with a reduction of
the classification error ranging from 2.37% on GARAGEBAND to
15.22% on PCMAC. Clearly, the training time required by C-∇S3VM
is higher than the time required by a standard SVM, due to the
larger number of training data, and to the use of the gradient
descent algorithm. Another important aspect to be considered
is that, with the only exception of G50C, the RBF-SVM fails in
matching the performance of the SVM with linear kernel due to
higher complexity of the model in relationship to the amount of
training data.
Next, we investigate the convergence behavior of DG-∇S3VM
and NEXT-∇S3VM, compared to the centralized implementation.
In particular, we test the algorithm on randomly generated
networks of N = 25 nodes. Results are presented in Fig. 2.
Particularly, panels on the left show the evolution of the global
cost function in (6), while panels on the right show the evolution
of the squared norm of the gradient. For readability, the graphs
use a logarithmic scale on the y-axis, while on the left we only
show the first 50 iterations of the optimization procedure. The
results are similar for all three datasets: NEXT-∇S3VM is able
to converge faster (up to one/two orders of magnitude) than

50 S. Scardapane et al. / Neural Networks 80 (2016) 43–52
(a) G50C. (b) PCMAC.

(c) GARAGEBAND.

Fig. 3. Box plots for the classification accuracy of the 5 algorithms, in the case N = 25. The central line is the median, the edges are the 25th and 75th percentiles, and the
whiskers extend to the most extreme data points. For readability, the names of the algorithms have been abbreviated to LIN (LIN-SVM), RBF (RBF-SVM), C (C-∇S3VM), DG
(DG-∇S3VM) and NEXT (NEXT-∇S3VM).
Table 3
Average value for classification error and computational time for the centralized
algorithms.

Dataset Algorithm Error (%) Time (s)

G50C
LIN-SVM 13.79 0.0008
RBF-SVM 13.36 0.0005
C-∇S3VM 6.36 0.024

PCMAC
LIN-SVM 21.32 0.0035
RBF-SVM 36.68 0.0032
C-∇S3VM 6.10 35.12

GARAGEBAND
LIN-SVM 23.87 0.0010
RBF-SVM 27.92 0.0007
C-∇S3VM 21.50 0.2872

DG-∇S3VM, thanks to a better exploitation of the structure of the
objective function. Indeed, both NEXT-∇S3VM and the centralized
implementation are able to converge to a stationary point in a
relatively small number of iterations, as shown by the panels
on the left. The same can be seen from the gradient norm
evolution, shown on the right panels, where the fast convergence
of NEXT-∇S3VM is even more pronounced. Similar insights can
be obtained by the analysis of the box plots in Fig. 3, where we
also compare with the results of LIN-SVM and RBF-SVM obtained
previously. The same conclusions are also obtainedwith a rigorous
statistical test. In particular, the corrected Friedman test (see
Demšar, 2006, Section 3.2.2 for details and a discussion on its
significance when comparing classifiers over multiple datasets)
finds significant differences among the results of the 5 algorithms,
with a p = 0.05 confidence value (in particular, the corrected
statistic has a value of 20.5 which is greater than the critical
value 3.84). To analyzewhich pair of algorithms present significant
differences, we run a set of post-hoc Nemenyi tests with the
same confidence interval (as also suggested in Demšar, 2006),
revealing differences between LIN-SVM, and both C-∇S3VM and
NEXT-∇S3VM, and similarly for RBF-SVM.

As a final experiment, we investigate the scalability of the
distributed algorithms, by analyzing the training time and the test
error of DG-∇S3VM and NEXT-∇S3VM when varying the number
of nodes in the network fromN = 5 toN = 40by steps of 5. Results
of this experiment are shown in Fig. 4. The three panels on the
left show the evolution of the classification error, while the three
panels on the right show the evolution of the training time. Results
of LIN-SVM, RBF-SVM and C-∇S3VM are shown with dashed lines
for comparison. It is possible to see that NEXT-∇S3VM can track
efficiently the centralized solution in all settings, regardless of
the size of the network, while DG-∇S3VM is not able to properly
converge (in the required number of iterations) for larger networks
on PCMAC. With respect to training time, results are more
varied. Generally speaking, NEXT-∇S3VM requires in average
more training time than DG-∇S3VM. However, for large datasets
(PCMAC and GARAGEBAND) both algorithms are comparable in
training time with the centralized solution and, more notably, the
training time generally decreases for bigger networks.

It is worth mentioning here that the results presented in this
paper strongly depend on our selection of the step-size sequences,
and the specific surrogate function in (20). In the former case,
it is known that the convergence speed of any gradient descent
procedure can be accelerated by considering a proper adaptable
step-size criterion. Along a similar reasoning, the training time
of NEXT-∇S3VM can in principle be decreased by loosening the
precision to which the internal surrogate function is optimized,

S. Scardapane et al. / Neural Networks 80 (2016) 43–52 51
(a) Classification error (G50C). (b) Training time (G50C).

(c) Classification error (PCMAC). (d) Training time (PCMAC).

(e) Classification error (GARAGEBAND). (f) Training time (GARAGEBAND).

Fig. 4. Training time and test error of GD-∇S3VM and NEXT-∇S3VM when varying the number of nodes in the network from N = 5 to N = 40. Results for LIN-SVM,
RBF-SVM and C-∇S3VM are shown with dashed lines for comparison.
due to the convergence properties of NEXT already mentioned
above. Finally, we can also envision a different choice of surrogate
function for NEXT-∇S3VM, in order to achieve a different trade-off
between training time and speed of convergence. As an example,
we can replace the hinge loss lk(w)with its first-order linearization
l̃k(w), similarly to (18). In this case, the resulting optimization
problem would have a closed form solution, resulting in a faster
training time per iteration (at the cost of more iterations required
for convergence).

Overall, the experimental results suggest that both algorithms
can be efficient tools for training a ∇S3VM in a distributed setting,
wherein NEXT-∇S3VM is able to converge extremely faster, at
the expense of a larger training time. Thus, the choice of a
specific algorithm will depend on the applicative domain, and on
the amount of computational resources (and size of the training
dataset) available to each agent.

6. Conclusions

In this paper, we have investigated the problem of learning a
semi-supervised support vector machine, when training data is
distributed over a network of interconnected agents. Particularly,

52 S. Scardapane et al. / Neural Networks 80 (2016) 43–52
we have leveraged over recent advances on distributed non-
convex optimization, in order to provide two flexible mechanisms
with a different balance in computational requirements and
speed of convergence. Overall, our work is one of the first steps
toward semi-supervised distributed learning which, as we stated
in Section 1, has a large number of practical applications in real-
world networks.

In this sense, a natural extension would be to consider different
semi-supervised techniques to be extended to the distributed
setting, particularly among those developed for the S3VM(Chapelle
et al., 2008), including the possibility of having more general
regularizers instead of the L2 norm, such as the L1 norm to
encourage sparsity (Gnecco & Sanguineti, 2010; Kurková, 2005). A
second line of research involves relaxing some of the assumptions
we made in this work, particularly in terms of synchronous
updates (requiring a mechanism for correctly synchronizing the
agents in the network), and fixed connectivity of the underlying
graph. Indeed, NEXT was originally designed for time-varying
connectivities (Di Lorenzo & Scutari, in press), while there has been
multiple efforts recently in order to design asynchronous gradient
updates over networks (Zhao & Sayed, 2015). Finally, as discussed
in the previous section, we can customize the proposed algorithms
with adaptive criteria for the internal solvers, or different choices
of the surrogate cost function in NEXT-∇S3VM.We are planning to
consider all these aspects in our future works.

References

Adankon, M. M., Cheriet, M., & Biem, A. (2009). Semisupervised least squares
support vector machine. IEEE Transactions on Neural Networks, 20(12),
1858–1870.

Ang, H. H., Gopalkrishnan, V., Hoi, S. C., & Ng, W. K. (2013). Classification in
P2P networks with cascade support vector machines. ACM Transactions on
Knowledge Discovery from Data, 7(4), 20.

Barbarossa, S., Sardellitti, S., & Di Lorenzo, P. (2014). Distributed detection and
estimation in wireless sensor networks. In R. Chellappa, & S. Theodoridis (Eds.),
Communications and radar signal processing: Vol. 2. Academic press library in
signal processing (pp. 329–408).

Bianchi, P., & Jakubowicz, J. (2013). Convergence of a multi-agent projected
stochastic gradient algorithm for non-convex optimization. IEEE Transactions
on Automatic Control, 58(2), 391–405.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization
and statistical learning via the alternating direction method of multipliers.
Foundations and Trends R⃝ in Machine Learning , 3(1), 1–122.

Cattivelli, F. S., Lopes, C. G., & Sayed, A. H. (2008). Diffusion recursive least-squares
for distributed estimation over adaptive networks. IEEE Transactions on Signal
Processing , 56(5), 1865–1877.

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2, 27:1–27:27.

Chapelle, O., Schölkopf, B., & Zien, A. (2006). Semi-supervised learning. Cambridge:
MIT Press.

Chapelle, O., Sindhwani, V., & Keerthi, S. S. (2006). Branch and bound for
semi-supervised support vector machines. In Advances in neural information
processing systems (pp. 217–224).

Chapelle, O., Sindhwani, V., & Keerthi, S. (2008). Optimization techniques for semi-
supervised support vector machines. Journal of Machine Learning Research, 9,
203–233.

Chapelle, O., & Zien, A. (2005). Semi-supervised classification by low density
separation. In Proceedings of the tenth international workshop on artificial
intelligence and statistics. Vol. 1 (pp. 57–64).

Chen, J., & Sayed, A. H. (2012). Diffusion adaptation strategies for distributed
optimization and learning over networks. IEEE Transactions on Signal Processing ,
60(8), 4289–4305.

Chen, J., & Sayed, A. H. (2013). Distributed pareto optimization via diffusion
strategies. IEEE Journal of Selected Topics in Signal Processing , 7(2), 205–220.

Chen, J., Wang, C., Sun, Y., & Shen, X. S. (2011). Semi-supervised Laplacian
regularized least squares algorithm for localization in wireless sensor
networks. Computer Networks, 55(10), 2481–2491.

Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., & Zhu, M. Y. (2002). Tools for privacy
preserving distributed data mining. ACM SIGKDD Explorations Newsletter , 4(2),
28–34.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7, 1–30.

Di Lorenzo, P., & Sayed, A. H. (2013). Sparse distributed learning based on diffusion
adaptation. IEEE Transactions on Signal Processing , 61(6), 1419–1433.

Di Lorenzo, P., & Scutari, G. (2016). NEXT: In-network nonconvex optimization. IEEE
Transactions on Signal and Information Processing over Networks, in press.
Facchinei, F., Scutari, G., & Sagratella, S. (2015). Parallel selective algorithms for
nonconvex big data optimization. IEEE Transactions on Signal Processing , 63(7),
1874–1889.

Fierimonte, R., Scardapane, S., Uncini, A., & Panella, M. (2015). Fully decentral-
ized semi-supervised learning via privacy-preserving matrix completion. IEEE
Transactions on Neural Networks and Learning Systems, submitted for publica-
tion.

Flouri, K., Beferull-Lozano, B., & Tsakalides, P. (2006). Training a SVM-based classifier
in distributed sensor networks. In Proceedings of 14nd European signal processing
conference. EUSIPCO’06 (pp. 1–5).

Forero, P. A., Cano, A., & Giannakis, G. B. (2010). Consensus-based distributed
support vector machines. Journal of Machine Learning Research, 11, 1663–1707.

Fung, G., &Mangasarian, O. L. (2001). Semi-superyised support vector machines for
unlabeled data classification. Optimization Methods and Software, 15(1), 29–44.

Gnecco, G., & Sanguineti, M. (2010). Regularization techniques and suboptimal
solutions to optimization problems in learning from data. Neural Computation,
22(3), 793–829.

Graf, H. P., Cosatto, E., Bottou, L., Dourdanovic, I., & Vapnik, V. (2004). Parallel
support vector machines: The cascade SVM. In Advances in neural information
processing systems (pp. 521–528).

Hensel, C., & Dutta, H. (2009). GADGET SVM: a gossip-based sub-gradient SVM
solver. In Proceedings of the 2009 international conference on machine learning.
ICML’2009.

Jaggi, M., Smith, V., Takác, M., Terhorst, J., Krishnan, S., Hofmann, T., & Jordan,
M. I. (2014). Communication-efficient distributed dual coordinate ascent.
In Advances in neural information processing systems (pp. 3068–3076).

Joachims, T. (1999). Transductive inference for text classification using support
vector machines. In Proceedings of the 1999 international conference on machine
learning. ICML’99 (pp. 200–209).

Kurková, V. (2005). Neural network learning as an inverse problem. Logic Journal of
IGPL, 13(5), 551–559.

Lee, S., & Nedic, A. (2013). Distributed random projection algorithm for convex
optimization. IEEE Journal of Selected Topics in Signal Processing , 7(2), 221–229.

Lee, C.-P., & Roth, D. (2015). Distributed box-constrained quadratic optimization for
dual linear SVM. In Proceedings of the 32nd international conference on machine
learning. ICML’15. ICML.

Li, Y.-f., Tsang, I. W., & Kwok, J. T. (2013). Convex and scalable weakly labeled SVMs.
Journal of Machine Learning Research, 14, 2151–2188.

Lodi, S., Aanculef, R., & Sartori, C. (2010). Single-pass distributed learning of
multi-class SVMs using core-sets. In Proceedings of the 2010 SIAM international
conference on data mining (pp. 257–268).

Lopes, C. G., & Sayed, A. H. (2008). Diffusion least-mean squares over adaptive
networks: Formulation and performance analysis. IEEE Transactions on Signal
Processing , 56(7), 3122–3136.

Lu, Y., Roychowdhury, V., & Vandenberghe, L. (2008). Distributed parallel support
vector machines in strongly connected networks. IEEE Transactions on Neural
Networks, 19(7), 1167–1178.

Mateos, G., Bazerque, J. A., & Giannakis, G. B. (2010). Distributed sparse linear
regression. IEEE Transactions on Signal Processing , 58(10), 5262–5276.

Mierswa, I., & Morik, K. (2005). Automatic feature extraction for classifying audio
data. Machine Learning , 58(2–3), 127–149.

Navia-Vázquez, A., Gutierrez-Gonzalez, D., Parrado-Hernández, E., & Navarro-
Abellan, J. J. (2006). Distributed support vector machines. IEEE Transactions on
Neural Networks, 17(4), 1091–1097.

Nedić, A., & Ozdaglar, A. (2009). Distributed subgradient methods for multi-agent
optimization. IEEE Transactions on Automatic Control, 54(1), 48–61.

Nedić, A., Ozdaglar, A., Parrilo, P., et al. (2010). Constrained consensus and
optimization in multi-agent networks. IEEE Transactions on Automatic Control,
55(4), 922–938.

Newman, M. (2010). Networks: an introduction. Oxford University Press.
Predd, J. B., Kulkarni, S. R., & Poor, H. V. (2006). Distributed learning in wireless

sensor networks. IEEE Signal Processing Magazine, 23(4), 56–69.
Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classification. Journal of

Machine Learning Research, 5, 101–141.
Sayed, A. H. (2014a). Adaptation, learning, and optimization over networks.

Foundations and Trends in Machine Learning , 7(4–5), 311–801.
Sayed, A. H. (2014b). Adaptive networks. Proceedings of the IEEE, 102(4), 460–497.
Scardapane, S., Comminiello, D., Scarpiniti, M., & Uncini, A. (2015). A semi-

supervised random vector functional-link network based on the transductive
framework. Information Sciences, in press.

Scardapane, S., Wang, D., & Panella, M. (2015). A decentralized training algorithm
for echo state networks in distributed big data applications. Neural Networks,
in press.

Scardapane, S., Wang, D., Panella, M., & Uncini, A. (2015). Distributed learning for
random vector functional-link networks. Information Sciences, 301, 271–284.

Scutari, G., Facchinei, F., Song, P., Palomar, D. P., & Pang, J.-S. (2014). Decomposition
by partial linearization: Parallel optimization of multi-agent systems. IEEE
Transactions on Signal Processing , 62(3), 641–656.

Tsitsiklis, J. N., Bertsekas, D. P., Athans, M., et al. (1986). Distributed asynchronous
deterministic and stochastic gradient optimization algorithms. IEEE Transac-
tions on Automatic Control, 31(9), 803–812.

Vapnik, V. (1998). Statistical learning theory, vol. 1. New York: Wiley.
Wang, D., & Zhou, Y. (2012). Distributed support vector machines: An overview.

In Proceedings of the 2012 24th Chinese control and decision conference, CCDC’12.
(pp. 3897–3901). IEEE.

Zhao, X., & Sayed, A. H. (2015). Asynchronous adaptation and learning over
networks part I: Modeling and stability analysis. IEEE Transactions on Signal
Processing , 63(4), 811–826.

Zhu, M., & Martínez, S. (2010). Discrete-time dynamic average consensus.
Automatica, 46(2), 322–329.

http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref1
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref2
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref3
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref4
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref5
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref6
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref7
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref8
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref9
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref10
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref12
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref13
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref14
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref15
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref16
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref17
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref18
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref19
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref20
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref22
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref23
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref24
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref25
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref27
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref29
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref30
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref32
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref34
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref35
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref36
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref37
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref38
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref39
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref40
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref41
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref42
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref43
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref44
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref45
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref46
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref47
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref48
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref49
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref50
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref51
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref52
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref53
http://refhub.elsevier.com/S0893-6080(16)30037-5/sbref54

	Distributed semi-supervised support vector machines
	Introduction
	Related works
	Semi-supervised support vector machines
	Distributed learning for S3 VM
	Formulation of the problem
	Solution 1: distributed gradient descent
	Solution 2: in-network successive convex approximations

	Experimental results
	Experimental setup
	Results and discussion

	Conclusions
	References

