
Neural Networks 78 (2016) 65–74
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2016 Special Issue

A decentralized training algorithm for Echo State Networks in
distributed big data applications
Simone Scardapane a,∗, Dianhui Wang b, Massimo Panella a

a Department of Information Engineering, Electronics and Telecommunications (DIET), ‘‘Sapienza’’ University of Rome, Via Eudossiana 18, 00184 Rome,
Italy
b Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3086, Australia

a r t i c l e i n f o

Article history:
Available online 18 August 2015

Keywords:
Recurrent neural network
Echo State Network
Distributed learning
Alternating Direction Method of Multipliers
Big data

a b s t r a c t

The current big data deluge requires innovative solutions for performing efficient inference on large,
heterogeneous amounts of information. Apart from the known challenges deriving from high volume
and velocity, real-world big data applications may impose additional technological constraints, including
the need for a fully decentralized training architecture. While several alternatives exist for training feed-
forward neural networks in such a distributed setting, less attention has been devoted to the case of
decentralized training of recurrent neural networks (RNNs). In this paper, we propose such an algorithm
for a class of RNNs known as Echo State Networks. The algorithm is based on the well-known Alternating
DirectionMethod of Multipliers optimization procedure. It is formulated only in terms of local exchanges
between neighboring agents,without reliance on a coordinating node. Additionally, it does not require the
communication of training patterns, which is a crucial component in realistic big data implementations.
Experimental results on large scale artificial datasets show that it compares favorably with a fully
centralized implementation, in terms of speed, efficiency and generalization accuracy.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

With 2.5 quintillion bytes of data generated every day, we are
undoubtedly in an era of ‘big data’ (Wu, Zhu, Wu, & Ding, 2014).
Amidst the challenges put forth to the machine learning commu-
nity by this big data deluge, much effort has been devoted to ef-
ficiently analyze large amounts of data by exploiting parallel and
concurrent infrastructures (Cevher, Becker, & Schmidt, 2014; Chu,
Kim, Lin, & Yu, 2007), and to take advantage of its possibly struc-
tured nature (Bakir, 2007). In multiple real world applications,
however, the main issue is given by the overall decentralized na-
ture of the data. In what we refer to as ‘data-distributed learn-
ing’ (Scardapane, Wang, Panella, & Uncini, 2015a), training data is
not available on a centralized location, but large amounts of it are
distributed throughout a network of interconnected agents
(e.g. computers in a peer-to-peer (P2P) network). Practically, a so-
lution relying on a centralized controller may be technologically
unsuitable, since it can introduce a single point of failure, and it

∗ Corresponding author. Tel.: +39 06 44585495; fax: +39 06 4873300.
E-mail addresses: simone.scardapane@uniroma1.it (S. Scardapane),

dh.wang@latrobe.edu.au (D. Wang), massimo.panella@uniroma1.it (M. Panella).

http://dx.doi.org/10.1016/j.neunet.2015.07.006
0893-6080/© 2015 Elsevier Ltd. All rights reserved.
is prone to communication bottlenecks. Additionally, training data
may not be allowed to be exchanged throughout the nodes,1 either
for its size (as is typical in big data applications), or because par-
ticular privacy concerns are present (Verykios et al., 2004). Hence,
the agents must agree on a single learnedmodel (such as a specific
neural network’s topology and weights) by relying only on their
data and on local communication between them. In the words of
Wu et al. (2014), this can informally be understood as ‘a number of
blind men [...] trying to size up a giant elephant ’, where the giant ele-
phant refers to the big data, and the blindmen are the agents in the
network. Although this analogy referred in general to data mining
with big data, it is a fittingmetaphor for the data-distributed learn-
ing setting considered in this paper, which is graphically depicted
in Fig. 1.

With respect to neural-like architectures, several decentral-
ized training algorithms have been investigated in the last few
years. This includes distributed strategies for training standard
multilayer perceptrons with back-propagation (Georgopoulos &
Hasler, 2014), support vector machines (Forero, Cano, & Giannakis,

1 In the rest of the paper, we use the terms ‘agent’ and ‘node’ interchangeably, to
refer to a single component of a network as the one in Fig. 1.

http://dx.doi.org/10.1016/j.neunet.2015.07.006
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2015.07.006&domain=pdf
mailto:simone.scardapane@uniroma1.it
mailto:dh.wang@latrobe.edu.au
mailto:massimo.panella@uniroma1.it
http://dx.doi.org/10.1016/j.neunet.2015.07.006

66 S. Scardapane et al. / Neural Networks 78 (2016) 65–74
Fig. 1. Decentralized inference in a network of agents: training data is distributed
throughout the nodes, all of whichmust converge to a singlemodel. For readability,
we assume undirected connections between agents.

2010; Navia-Vázquez, Gutierrez-Gonzalez, Parrado-Hernández, &
Navarro-Abellan, 2006), deep networks (Dean et al., 2012) and
random vector functional-link nets (Scardapane et al., 2015a).
These are explored more in depth in Section 2.1. Additionally, de-
centralized inference has attracted interest from other research
communities, includingWireless Sensor Networks (WSNs) (Predd,
Kulkarni, & Poor, 2007), cellular neural networks (Luitel & Ve-
nayagamoorthy, 2012), distributed optimization (Boyd, Parikh,
Chu, Peleato, & Eckstein, 2011; Cevher et al., 2014), distributed on-
line learning (Zinkevich, Weimer, Li, & Smola, 2010), and others.

Much less attention has been paid to the topic of distributed
learning with recurrent neural networks (RNNs). In fact, despite
numerous recent advances (Hermans & Schrauwen, 2013;Martens
& Sutskever, 2011; Monner & Reggia, 2012; Sak, Senior, & Beau-
fays, 2014; Sutskever, Vinyals, & Le, 2014), RNN training remains a
daunting task even in the centralized case, mostly due to the well-
known problems of the exploding and vanishing gradients (Pas-
canu, Mikolov, & Bengio, 2013). A decentralized training algorithm
for RNNs, however, would be an invaluable tool in multiple large
scale real world applications, including time-series prediction on
WSNs (Predd et al., 2007), and multimedia classification over P2P
networks (Scardapane, Wang, Panella, & Uncini, 2015b).

To summarize, in this paper we are concerned with big data
scenarios defined by three characteristics: (i) time-varying (i.e., dy-
namic); (ii) distributed in nature, without the possibility ofmoving
the data across the network; and (iii) large in volume. Clearly, the
actual definition of this last point will depend on the specific ap-
plication, e.g. large volumes in a WSN context have a completely
different scale with respect to large volumes in a cluster of com-
puters. Nonetheless, in this paper we investigate this problem by
considering datasets that are 1–2 order ofmagnitudes greater with
respect to previous works on related subjects.

To bridge the gap between distributed learning and RNNs,
we propose here a data-distributed training algorithm for a class
of RNNs known as Echo State Networks (ESNs) (Jaeger, 2002;
Lukoševičius & Jaeger, 2009; Verstraeten, Schrauwen, d’Haene,
& Stroobandt, 2007). The main idea of ESNs is to separate the
recurrent part of the network (the so-called ‘reservoir’), from the
non-recurrent part (the ‘readout’). The reservoir is typically fixed in
advance, by randomly assigning its connections, and the learning
problem is reduced to a standard linear regression over the
weights of the readout. Due to this, ESNs do not required complex
back-propagation algorithms over the recurrent portion of the
network (Campolucci, Uncini, Piazza, & Rao, 1999; Pearlmutter,
1995), thus avoiding the problems of the exploding and vanishing
gradients. ESNs have been applied successfully to a wide range
of domains, including chaotic time-series prediction (Jaeger &
Haas, 2004; Li, Han, & Wang, 2012), grammatical inference (Tong,
Bickett, Christiansen, & Cottrell, 2007), stock price prediction (Lin,
Yang, & Song, 2009), speech recognition (Skowronski & Harris,
2007) and acoustic modeling (Triefenbach, Jalalvand, Demuynck,
& Martens, 2013), between others. While several researchers
have investigated the possibility of spatially distributing the
reservoir (Obst, 2014; Shutin & Kubin, 2008; Vandoorne, Dambre,
Verstraeten, Schrauwen, & Bienstman, 2011), as depicted in
Section 2.2, to the best of our knowledge, no algorithm has been
proposed to train an ESN in the data-distributed case.

The algorithm that we propose is a straightforward applica-
tion of the well-known Alternating Direction Method of Multipli-
ers (ADMM) optimization technique, which is used to optimize a
global loss function defined from all the local datasets. Communi-
cation between different agents is restricted to the computation
of global averages starting from local vectors. This operation can
be implemented efficiently in the decentralized setting with the
use of the ‘decentralized average consensus’ (DAC) procedure (Bar-
barossa, Sardellitti, & Di Lorenzo, 2013; Olfati-Saber, Fax, & Mur-
ray, 2007). The resulting algorithm is formulated considering only
local exchanges between neighboring nodes, thus making it appli-
cable in networkswhere no centralized authority is present. More-
over, there is no need of exchanging training patterns which, as we
stated previously, is a critical aspect in big data applications.

Our proposed algorithm is evaluated over several known
benchmarks for ESNs applications, related to short-term and mid-
term chaotic series prediction and non-linear system identifica-
tion, where ESNs are known to achieve state-of-the-art results. As
we stated before, to simulate a large scale application, we consider
training datasetswhich are roughly 1–2 orders ofmagnitude larger
than previous works. Experimental results show that the ADMM-
based ESN trained in a decentralized fashion performs favorably
with respect to a fully centralized approach, regarding speed, ac-
curacy, and generalization capabilities.

The rest of the paper is organized as follows. In Section 2 we
analyze related works on decentralized learning for feed-forward
neural networks and support vector machines. Additionally, we
detail previous research on spatially distributing the reservoir.
In Section 3 we present the theoretical frameworks necessary
to formulate our algorithm, i.e. the standard ESN framework
with a least-square solution in Section 3.1, the DAC procedure in
Section 3.2, and the ADMM optimization algorithm in Section 3.3.
Them, we formalize the distributed training problem for ESNs in
Section 4, and provide an ADMM-based algorithm for its solution.
This is the main contribution of the present paper. Sections 5 and
6 detail multiple experiments on large scale artificial datasets.
Finally, we conclude the paper in Section 7, by pointing out the
current limitations of our approach, and possible future lines of
research.

Notation

In the rest of the paper, vectors are denoted by boldface
lowercase letters, e.g. a, while matrices are denoted by boldface
uppercase letters, e.g. A. All vectors are assumed to be column
vectors unless otherwise specified. The operator ∥·∥2 is the
standard L2 norm on an Euclidean space. Finally, the notation a[n]
is used to denote dependence with respect to a time-instant, both
for time-varying signals (in which case n refers to a time-instant)
and for elements in an iterative procedure (in which case n is the
iteration’s index).

2. Related work

2.1. Data-distributed learning for feed-forward models

As stated in the previous section, several works over the last
few years have explored the idea of fully decentralized training
for feed-forward neural networks and support vector machines
(SVMs). We present here a brief overview of a selection of these

S. Scardapane et al. / Neural Networks 78 (2016) 65–74 67
works, which are related to the algorithm discussed in this
paper.

In the context of SVMs, one of the earliest steps in this
direction was the Distributed Semiparametric Support Vector
Machine (DSSVM) presented in Navia-Vázquez et al. (2006). In
the DSSVM, every local node selects a number of centroids from
the training data. These centroids are then shared with the other
nodes, and their corresponding weights are updated locally based
on an iterated reweighted least squares (IRWLS) procedure. The
DSSVM may be suboptimal, and it requires incremental passing
of the support vectors (SVs), or centroids, between the nodes,
which in turn requires the computation of a Hamiltonian cycle
between them. An alternative Distributed Parallel SVM (DPSVM)
is presented in Lu, Roychowdhury, and Vandenberghe (2008).
Differently from the DSSVM, the DPSVM is guaranteed to reach the
global optimal solution of the centralized SVM in a finite number of
steps.Moreover, it considers general strongly connected networks,
with only exchanges of SVs between neighboring nodes. Still, the
need of exchanging the set of SVs, reduces the capability of the
algorithm to scale to very large networks. A third approach is
presented in Forero et al. (2010), where the problem is recast as
multiple convex subproblems at every node, and solved with the
use of the ADMM procedure (introduced in Section 3.3). ADMM is
widely employed for deriving decentralized training algorithms in
the case of convex optimization problems, such as the SVM and the
algorithm presented in this paper. Other important applications
include decentralized sparse linear regression (i.e. LASSO) (Mateos,
Bazerque, & Giannakis, 2010) and its variations, such as group
LASSO (Boyd et al., 2011).

A simpler approach, not deriving from the distributed opti-
mization literature, is instead the ‘consensus-based learning’ (CBL)
introduced in Georgopoulos and Hasler (2014). CBL allows to
transform any iterative learning procedure (defined in the central-
ized case) into a general distributed algorithm. This is achieved by
interleaving the local update steps at every node with global aver-
aging steps over the network, with the DAC protocol (detailed in
Section 3.2). In Georgopoulos and Hasler (2014) it is shown that,
if the local update rule is contractive, the distributed algorithm
converges to a unique classifier. The CBL idea is applied to the
distributed training of a multilayer perceptron, with results com-
parable to that of a centralized classifier. In Scardapane et al.
(2015a), the authors compare a DAC-based and an ADMM-based
training algorithms for a class of neural networks known as Ran-
dom Vector Functional-Links (RVFLs). The DAC-based algorithm,
albeit heuristic, was found to be competitive with respect to the
ADMM-based one in terms of generalization accuracy, with an ex-
tremely reduced training time. The connections between (Scarda-
pane et al., 2015a) and the present paper are further explored in
Section 4. An extension of the DAC-based algorithm for RVFLs, in-
spired from the CBL framework, is instead presented in Scardapane
et al. (2015b), with an application to several music classification
benchmarks.

A few additional works from the field of signal processing
are also worth citing. Distributed learning using linear models
and time-varying signals has been investigated extensively in the
context of diffusion filtering (Cattivelli, Lopes, & Sayed, 2008; Di
Lorenzo & Sayed, 2013). Clearly, linear models are not capable
of efficiently capturing complex non-linear dynamics, which are
common in WSNs and multimedia applications. Due to this, some
algorithms have been proposed for distributed filtering using
kernel-based methods, which are briefly reviewed in Predd et al.
(2007); Predd, Kulkarni, and Poor (2009). However, these suffer
from the same problems relative to SVMs, i.e., their models grow
linearly with respect to the size of all the local datasets. See
also Honeine, Richard, Bermudez, and Snoussi (2008) for further
analyses on this point.
Fig. 2. Schematic depiction of a ESN. Random connections are shown with dashed
lines, while trainable connections are shown with solid lines.

2.2. Spatially distributed echo state networks

Albeit no work has been done on data-distributed ESNs, several
researchers have explored the possibility of spatially distributing
the reservoir. The first work in this sense was the Echo State
Wireless Sensor Network (ES-WSN) (Shutin & Kubin, 2008). In
an ES-WSN, the WSN acts as a reservoir, where each sensor
represents a neuron. As shown in the paper, distributed learning
with ES-WSN is possible if the network is strongly connected. A
slightly more general framework, with multiple neurons at every
sensor and different inputs and output vectors, is the spatially
organized distributed ESN (SODESN) (Obst, 2014). The SODESN
was specifically introduced to solve the fault detection problem in
WSNs.

A related line of research has investigated the possibility of
implementing a fully parallel reservoir using specific hardware,
with a centralized readout. Examples of this are reservoirs realized
from coherent semiconductor optical amplifiers (Vandoorne et al.,
2011) and passive silicon photonics chips (Vandoorne et al., 2014).

3. Preliminaries

In this section, we present the basic theoretical results needed
to formulate our data-distributed ESN. We start by detailing
ESN theory in Section 3.1. Then, we describe the DAC procedure
in Section 3.2. Finally, we introduce the ADMM algorithm in
Section 3.3.

3.1. Echo state networks

An ESN is a recurrent neural network which can be partitioned
in three components, as shown in Fig. 2.

The Ni-dimensional input vector x[n] ∈ RNi is fed to an Nr -
dimensional reservoir, whose internal state h[n − 1] ∈ RNr is
updated according to the state equation:

h[n] = fres(Wr
i x[n] + Wr

rh[n − 1] + Wr
oy[n − 1]), (1)

where Wr
i ∈ RNr×Ni , Wr

r ∈ RNr×Nr and Wr
o ∈ RNr×No are randomly

generatedmatrices, fres(·) is a suitably defined non-linear function,
and y[n − 1] ∈ RNo is the previous No-dimensional output of the
network. To increase stability, it is possible to add a small uniform
noise term to the state update, before computing the non-linear
transformation fres(·) (Jaeger, 2002). Then, the current output is
computed according to:

y[n] = fout(Wo
i x[n] + Wo

rh[n]), (2)

where Wo
i ∈ RNo×Ni ,Wo

r ∈ RNo×Nr are adapted based on the
training data, and fout(·) is an invertible non-linear function. For
simplicity, in the rest of the paper wewill consider the case of one-
dimensional output, i.e. No = 1, but everything we say extends
straightforwardly to the case No > 1.

To be of use in any learning application, the reservoir must
satisfy the so-called ‘echo state property’ (ESP) (Lukoševičius &

68 S. Scardapane et al. / Neural Networks 78 (2016) 65–74
Jaeger, 2009). Informally, thismeans that the effect of a given input
on the state of the reservoirmust vanish in a finite number of time-
instants. A widely used rule-of-thumb that works well in most
situations is to rescale the matrix Wr

r to have ρ(Wr
r) < 1, where

ρ(·) denotes the spectral radius operator.2 For simplicity, we adopt
this heuristic strategy in this paper, but we refer the readers to
Yildiz, Jaeger, and Kiebel (2012); Zhang, Miller, and Wang (2012)
for recent theoretical results on this aspect.

To train the ESN, suppose we are provided with a sequence of
Q desired input–outputs pairs (x[1], d[1]) . . . , (x[Q], d[Q]). The
sequence of inputs is fed to the reservoir, giving a sequence of
internal states h[1], . . . ,h[Q] (this is known as ‘state harvesting’
or ‘state gathering’). During this phase, since the output of the ESN
is not available for feedback, the desired output is used instead in
Eq. (1) (so-called ‘teacher forcing’). Define the hiddenmatrixH and
output vector d as:

H =

xT [1] hT
[1]

...

xT [1] hT
[Q]

 (3)

d =

 f −1
out (d[1])

...

f −1
out (d[Q])

 . (4)

The optimal output weight vector is then given by solving the
following regularized least-square problem:

w∗
= argmin

w∈RNi+Nr

1
2

∥Hw − d∥
2
2 +

λ

2
∥w∥

2
2 , (5)

where w =

Wo

i W
o
r

T and λ ∈ R+ is a positive scalar known as
regularization factor.3 Solution of problem in Eq. (5) can be obtained
in closed form as:

w∗
=

HTH + λI

−1 HTd. (6)

More in general, we are provided with a training set S of multiple
desired sequences. In this case, we can simply stack the resulting
hiddenmatrices and output vectors, and solve Eq. (5). Additionally,
we note that in practice we can remove the initial D elements
(denoted as ‘dropout’ elements) from each sequence when solving
the least-square problem, with D specified a-priori, due to their
transient state. See Jaeger (2002) for a discussion of ESN training
in the case of online learning.

3.2. Decentralized average consensus

Consider a network of L interconnected agents, as the one in
Fig. 1, whose connectivity is known a-priori and is fixed. We can
fully describe the connectivity between the nodes in the form of
an L × L connectivity matrix C, where Cij ≠ 0 if and only if nodes
i and j are connected. In this paper, we assume that the network
is connected (i.e., every node can be reached from another node
with a finite number of steps), and undirected (i.e., C is symmetric).
Additionally, suppose that every node has a measurement vector
denoted by θk[0], k = 1 . . . L.

DAC is an iterative network protocol to compute the global
average with respect to the local measurement vectors, requiring
only local communications between them (Barbarossa et al.,

2 The spectral radius of a generic matrix A is ρ(A) = maxi {|λi(A)|}, where λi(A)

is the ith eigenvector of A.
3 Since we consider one dimensional outputs, Wo

i and Wo
r are now row vectors,

of dimensionality Ni and Nr respectively.
2013; Georgopoulos & Hasler, 2014; Olfati-Saber et al., 2007). Its
simplicity makes it suitable for implementation even in the most
basic networks, such as robot swarms (Georgopoulos & Hasler,
2014). At a generic iteration n, the local DAC update is given by:

θk[n] =

L
j=1

Ckjθj[n − 1]. (7)

If the weights of the connectivity matrix C are chosen appropri-
ately, this recursive procedure converges to the global average
given by Olfati-Saber et al. (2007):

lim
n→+∞

θk[n] =
1
L

L
k=1

θk[0], ∀k ∈ {1, 2, . . . , L} . (8)

Practically, the procedure can be stopped after a certain predefined
number of iterations is reached, or when the norm of the update
is smaller than a certain user-defined threshold δ (see Scardapane
et al., 2015a). In the case of undirected, connected networks, a
simple way of ensuring convergence is given by choosing the so-
called ‘max-degree’ weights (Olfati-Saber et al., 2007):

Ckj =


1

d + 1
if k is connected to j

1 −
dk

d + 1
if k = j

0 otherwise,

(9)

where dk is the degree of node k, and d is the maximum degree
of the network.4 In practice, many variations on this standard
procedure can be implemented to increase the convergence rate,
such as the ‘definite consensus’ (Georgopoulos & Hasler, 2014), or
the strategy introduced in Sardellitti, Giona, andBarbarossa (2010).

3.3. Alternating direction method of multipliers

The final theoretical tool needed in the following section is the
ADMM optimization procedure (Boyd et al., 2011). ADMM solves
optimization problems of the form:

minimize
s∈Rd,z∈Rl

f (s) + g(z)

subject to As + Bz + c = 0,
(10)

where A ∈ Rp×d, B ∈ Rp×l and c ∈ Rp. To solve this, consider the
augmented Lagrangian given by:

Lρ(s, z, t) = f (x) + g(z) + tT (As + Bz + c)

+
ρ

2
∥As + Bz + c∥2

2 , (11)

where t ∈ Rp is the vector of Lagrangemultipliers, ρ is a scalar, and
the last term is added to ensure differentiability and convergence
(Boyd et al., 2011). The optimum of problem in Eq. (10) is obtained
by iterating the following updates:

s[n + 1] = argmin
s


Lρ(s, z[n], t[n])


(12)

z[n + 1] = argmin
z


Lρ(s[n + 1], z, t[n])


(13)

t[n + 1] = t[n] + ρ (As[n + 1] + Bz[n + 1] + c) . (14)

Some results on the asymptotic convergence of ADMM can be
found in Boyd et al. (2011, Section 3.2). In particular, convergence

4 The degree of a node is the cardinality of the set of its direct neighbors.

S. Scardapane et al. / Neural Networks 78 (2016) 65–74 69
can be tracked by computing the so-called primal and dual
residuals:

r[n] = As[n] + Bz[n] + c, (15)

s[n] = ρATB (z[n] − z[n − 1]) . (16)

ADMM can be stopped after a maximum number of iterations, or
when both residuals are lower than two pre-specified thresholds:
∥r[n]∥2 < ϵprimal
∥s[n]∥2 < ϵdual.

Threshold can be chosen based on the combination of a relative and
an absolute termination criteria (Boyd et al., 2011):

ϵprimal =
√
pϵabs + ϵrel max {∥As[n]∥2 , ∥Bz[n]∥2 , ∥c∥2} (17)

ϵdual =
√
dϵabs + ϵrel

AT t[n]

2 (18)

where ϵabs and ϵrel are user-specified tolerances, typically in the
range 10−3–10−5.

4. Data-distributed ESN

In this section, we introduce our decentralized training algo-
rithm for ESNs. Suppose that the training dataset S is distributed
among a network of nodes, as the one described in Section 3.2.
As a prototypical example, multiple sensors in a WSNs can collect
different measurements of the same underlying time-series to be
predicted. Additionally, suppose that the nodes have agreed on a
particular choice of the fixed matricesWr

i ,W
r
r andWr

o.
5 Denote by

Hk and dk the hiddenmatrices and output vectors, computed at the
kth node according to Eqs. (3)–(4)with its local dataset. In this case,
extending Eq. (5), the global optimization problemcanbe stated as:

w∗
= argmin

w∈RNi+Nr

1
2


L

k=1

∥Hkw − dk∥
2
2


+

λ

2
∥w∥

2
2 . (19)

In theory, distributed least-square problems as the one in Eq. (19)
can be solved in a decentralized fashion with two sequential DAC
steps, the first of which on the matrices HT

kHk, and the second on
the vectors HT

kdk (Xiao, Boyd, & Lall, 2005). In our case, however,
this scheme is impractical to implement due to the typical large
size of the reservoir, making the communication of the matrices
HT

kHk a probable network bottleneck.6 More in general, the prob-
lem in Eq. (19) can be solved efficiently by distributed optimization
routines, such as ADMM (Boyd et al., 2011). The idea is to reformu-
late the problem by introducing local variables wk for every node,
and forcing them to be equal at convergence:

minimize
z,w1,...,wL∈RNi+Nr

1
2


L

k=1
∥Hkwk − dk∥

2
2


+

λ
2 ∥z∥2

2 (20)

subject to wk = z, k = 1 . . . L. (21)

The augmented Lagrangian of problem in Eq. (21) is given by:

Lρ(·) =
1
2


L

k=1

∥Hkwk − dk∥
2
2


+

λ

2
∥z∥2

2

+

L
k=1

tTk (wk − z) +
γ

2

L
k=1

∥wk − z∥2
2 . (22)

5 There are several strategies to this end. In simple networks, this choice can be
pre-implemented on every node. More generally, a single node can be chosen via a
leader election protocol, assign the matrices, and broadcast them to the rest of the
network.
6 A similar issue is explored in Scardapane et al. (2015a, Remark 1).
Algorithm 1: Local training algorithm for ADMM-based ESN at kth
node
Inputs: Training set Sk (local), size of reservoir Nr (global),

regularization factors λ, γ (global), maximum number of
iterations T (global)

Output: Optimal output weight vectorw∗

1: Assign matricesWr
i ,W

r
r andWr

o, in agreement with the other
agents in the network.

2: Gather the hidden matrix Hk and teacher signal dk from Sk.
3: Initialize tk[0] = 0, z[0] = 0.
4: for n from 0 to T do
5: Compute wk[n + 1] according to Eq. (23).
6: Compute averages ŵ and t̂ by means of the DAC procedure

(see Section 3.2).
7: Compute z[n + 1] according to Eq. (24).
8: Compute tk[n + 1] according to Eq. (25).
9: Compute residuals according to Eqs. (27) and (28), and

check termination criterion.
10: end for
11: return z[n]

Straightforward computations show that the updates forwk[n+1]
and z[n + 1] can be computed in closed form as:

wk[n + 1] =

HT

kHk + γ I
−1 HT

kdk − tk[n] + γ z[n]

, (23)

z[n + 1] =
γ ŵ + t̂
λ/L + γ

, (24)

where we introduced the averages ŵ =
1
L

L
k=1 wk[n + 1] and

t̂ =
1
L

L
k=1 tk[n]. These averages can be computed in a decentral-

ized fashion using a DAC step, as detailed in Section 3.2. Eq. (14)
instead simplifies to:

tk[n + 1] = tk[n] + γ (wk[n + 1] − z[n + 1]) . (25)

Eqs. (23) and (25) can be computed locally at every node. Hence,
the overall algorithm can be implemented in a purely decentral-
ized fashion, where communication is restricted to the use of the
DAC protocol. In cases where, on a node, the number of training
samples is lower than Nr +Ni, we can exploit the matrix inversion
lemma to obtain a more convenient matrix inversion step (Mateos
et al., 2010):
HT

kHk + γ I
−1

= γ −1 I − HT
k


γ I + HkHT

k


Hk

. (26)

With respect to the training complexity, the matrix inversion and
the termHT

kdk in Eq. (23) can be precomputed at the beginning and
stored into memory. Additionally, in this case the residuals in Eqs.
(15)–(16) are given by:

rk[n] = wk[n] − z[n], (27)
s[n] = −γ (z[n] − z[n − 1]) . (28)

The pseudocode for the algorithm at a local node is provided in Al-
gorithm 1.

Remark 1. ESNs admit a particular class of feed-forward neural
networks, called Random Vector Functional-Links (RVFLs) (Igelnik
& Pao, 1995; Pao & Takefuji, 1992), as a degenerate case. In
particular, this corresponds to the casewhereWr

r andWr
o are equal

to the zero matrix. An ADMM-based training algorithm for RVFLs
was introduced in Scardapane et al. (2015a). Thus, the algorithm
presented in this paper can be seen as a generalization of that work
to the case of a dynamic reservoir.

Remark 2. A large number of techniques have been developed to
increase the generalization capability of ESNs without increasing

70 S. Scardapane et al. / Neural Networks 78 (2016) 65–74
its computational complexity (Lukoševičius & Jaeger, 2009). Pro-
vided that the optimization problem in Eq. (5) remains unchanged,
and the topology of the ESN is not modified during the learning
process, many of them can be applied straightforwardly to the dis-
tributed training case with the algorithm presented in this paper.
Examples of techniques that can be used in this context include
lateral inhibition (Xue, Yang, & Haykin, 2007), spiking neurons
(Schliebs, Mohemmed, & Kasabov, 2011) and random projections
(Butcher, Verstraeten, Schrauwen, Day, & Haycock, 2013). Con-
versely, techniques that cannot be straightforwardly applied in-
clude intrinsic plasticity (Steil, 2007) and reservoir’s pruning (Scar-
dapane, Nocco, Comminiello, Scarpiniti, & Uncini, 2014).

5. Experimental setup

In this section we describe our experimental setup. MATLAB
code to repeat the experiments is available on the web under BSD
license.7 Simulations were performed on MATLAB R2013a, on a
64 bit operative system, using an Intel R⃝ CoreTM i5-3330 CPU with
3 GHz and 16 GB of RAM.

5.1. Description of the datasets

We validate the proposed ADMM-based ESN on four standard
artificial benchmarks applications, related to non-linear system
identification and chaotic time-series prediction. These are tasks
where ESNs are known to perform at least as good as the state
of the art (Lukoševičius & Jaeger, 2009). Additionally, they are
common in distributed scenarios. For comparisons between stan-
dard ESNs and other techniques, which go outside the scope of
the present paper, we refer the reader to Lukoševičius and Jaeger
(2009) and references therein. To simulate a large scale analysis,
we consider datasets that are approximately 1–2 orders of magni-
tude larger than previous works. In particular, for every dataset we
generate 50 sequences of 2000 elements each, starting from differ-
ent initial conditions, summingup to 100.000 samples for every ex-
periment. This is roughly the limit at which a centralized solution
is amenable for comparison. Below we provide a brief description
of the four datasets.

TheNARMA-10 dataset (denoted byN10) is a non-linear system
identification task, where the input x[n] to the system is white
noise in the interval [0, 0.5], while the output d[n] is computed
from the recurrence equation (Jaeger, 2002):

d[n] = 0.1 + 0.3d[n − 1] + 0.05d[n − 1]

×

10
i=1

d[n − i] + 1.5x[n]x[n − 9]. (29)

The output is then squashed to the interval [−1, +1] by the non-
linear transformation:

d[n] = tanh(d[n] − d̂), (30)

where d̂ is the empirical mean computed from the overall output
vector.

The second dataset is the extended polynomial (denoted by
EXTPOLY) introduced in Butcher et al. (2013). The input is given by
white noise in the interval [−1 + 1], while the output is computed
as:

d[n] =

p
i=0

p−i
j=0

aijxi[n]xj[n − l], (31)

7 https://bitbucket.org/ispamm/distributed-esn [last visited on 2015-07-06].
where p, l ∈ R are user-defined parameters controlling the
memory andnon-linearity of the polynomial,while the coefficients
aij are randomly assigned from the same distribution as the input
data. In our experiments, we use a mild level of memory and non-
linearity by setting p = l = 7. The output is normalized using
Eq. (30).

The third dataset is the prediction of the well-known Mackey–
Glass chaotic time-series (denoted as MKG). This is defined in
continuous time by the differential equation:

ẋ[n] = βx[n] +
αx[n − τ]

1 + xγ [n − τ]
. (32)

We use the common assignment α = 0.2, β = −0.1, γ = 10,
giving rise to a chaotic behavior for τ > 16.8. In particular, in our
experiments we set τ = 30. Time-series in Eq. (32) is integrated
with a 4th order Runge–Kutta method using a time step of 0.1, and
then sampled every 10 time-instants. The task is a 10-step ahead
prediction task, i.e.:

d[n] = x[n + 10]. (33)

The fourth dataset is another chaotic time-series prediction
task, this time on the Lorenz attractor. This is a 3-dimensional
time-series, defined in continuous time by the following set of
differential equations:ẋ1[n] = σ (x2[n] − x1[n])
ẋ2[n] = x1[n] (η − x3[n]) − x2[n]
ẋ3[n] = x1[n]x2[n] − ζ x3[n],

(34)

where the standard choice for chaotic behavior is σ = 10, η =

28 and ζ = 8/3. The model in Eq. (34) is integrated using an
ODE45 solver, and sampled every second. For this task, the input
to the system is given by the vector


x1[n] x2[n] x3[n]


, while the

required output is a 1-step ahead prediction of the x1 component,
i.e.:

d[n] = x1[n + 1]. (35)

For all four datasets, we supplement the original input with an
additional constant unitary input, as is standard practice in ESNs’
implementations (Lukoševičius & Jaeger, 2009).

5.2. Description of the algorithms

In our simulations we generate a network of agents, as the
one of Fig. 1, using a random topology model for the connectivity
matrix, where each pair of nodes can be connected with 25%
probability. The only global requirement is that the overall
network is connected. We experiment with a number of nodes
going from 5 to 25, by steps of 5. To estimate the testing error, we
perform a 3-fold cross-validation on the 50 original sequences. For
every fold, the training sequences are evenly distributed across the
nodes, and the following three algorithms are compared:

Centralized ESN (C-ESN): This simulates the case where training
data is collected on a centralized location, and the net is
trained by directly solving problem in Eq. (19).

Local ESN (L-ESN): In this case, each node trains a local ESN start-
ing from its data, but no communication is performed.
The testing error is then averaged throughout the Lnodes.

ADMM-based ESN (ADMM-ESN): This is an ESN trained with the
distributed protocol introduced in Section 4. We set ρ =

0.01, a maximum number of 400 iterations, and ϵabs =

ϵrel = 10−4.

https://bitbucket.org/ispamm/distributed-esn

S. Scardapane et al. / Neural Networks 78 (2016) 65–74 71
(a) Dataset N10. (b) Dataset EXTPOLY.

(c) Dataset MKG. (d) Dataset LORENZ.

Fig. 3. Evolution of the testing error (defined as the NRMSE), for networks going from 5 agents to 25 agents. Performance of L-ESN is averaged across the nodes. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
All algorithms share the same ESN architecture, which is de-
tailed in the following section. The 3-fold cross-validation proce-
dure is repeated 15 times by varying the ESN initialization and the
data partitioning, and the errors for every iteration and every fold
are collected. To compute the error, we run the trained ESN on the
test sequences, and gather the predicted outputs ỹ1, . . . , ỹK , where
K is the number of testing samples after removing the dropout ele-
ments from the test sequences. Then, we compute the Normalized
Root Mean-Squared Error (NRMSE), defined as:

NRMSE =

 K
i=1


ỹi − di

2
|K |σ̂d

, (36)

where σ̂d is an empirical estimate of the variance of the true output
samples d1, . . . , dK . We note that, in the experiments, the network
is artificially simulated on a single machine. A complete analysis of
the time required to train ADMM-ESN would require knowledge
of the overhead introduced by the realistic network channel, how-
ever, this goes outside the scope of the current paper.

5.3. ESN architecture

As stated previously, all algorithms share the same ESN
architecture. In this section we provide a brief overview on the
selection of its parameters. Firstly, we choose a default reservoir’s
size of Nr = 300, which was found to work well in all situations.
Secondly, since the datasets are artificial and noiseless, we set a
small regularization factor λ = 10−3. Four other parameters are
instead selected based on a grid search procedure. The validation
error for the grid-search procedure is computed by performing
a 3-fold cross-validation over 9 sequences, which are generated
independently from the training and testing set. Each validation
sequence has length 2000. In particular, we select the following
parameters:

• The matrix Wr
i , connecting the input to the reservoir, is

initialized as a full matrix, with entries assigned from the
uniform distribution [−αi αi]. The optimal parameter αi is
searched in the set {0.1, 0.3, . . . , 0.9}.

• Similarly, thematrixWr
o, connecting the output to the reservoir,

is initialized as a full matrix, with entries assigned from the
uniform distribution [−αf αf]. The parameter αf is searched in
the set {0, 0.1, 0.3, . . . , 0.9}. We allow αf = 0 for the case
where no output feedback is needed.

• The internal reservoir matrixWr
r is initialized from the uniform

distribution [−1 + 1]. Then, on average 75% of its connections
are set to 0, to encourage sparseness. Informally, a sparse
internal matrix creates ‘clusters’ of heterogeneous features
from its input (Jaeger, 2002; Scardapane et al., 2014). Finally, to
preserve stability, the matrix is rescaled so as to have a desired
spectral radius ρ, which is searched in the same interval as αi
(see the discussion on the spectral radius in Section 3.1).

• We use tanh(·) non-linearities in the reservoir, while a scaled
identity f (s) = αts as the output function. The parameter αt is
searched in the same interval as αi.

Additionally, we insert uniform noise in the state update of the
reservoir, sampled uniformly in the interval


0, 10−3


, and we

discard D = 100 initial elements from each sequence.

72 S. Scardapane et al. / Neural Networks 78 (2016) 65–74
(a) Dataset N10. (b) Dataset EXTPOLY.

(c) Dataset MKG. (d) Dataset LORENZ.

Fig. 4. Evolution of the training time, for networks going from 5 agents to 25 agents. Time of L-ESN is averaged across the nodes.
Table 1
Optimal parameters found by the grid-search procedure. For a description of the
parameters, see Section 5.2.

Dataset ρ αi αt αf Nr λ

N10 0.9 0.5 0.1 0.3

300 2−3EXTPOLY 0.7 0.5 0.1 0
MKG 0.9 0.3 0.5 0
LORENZ 0.1 0.9 0.1 0

Table 2
Final misclassification error and training time for C-ESN, provided as a reference,
together with one standard deviation.

Dataset NRMSE Time (s)

N10 0.08 ± 0.01 9.26 ± 0.20
EXTPOLY 0.39 ± 0.01 8.96 ± 0.19
MKG 0.18 ± 0.03 9.02 ± 0.15
LORENZ 0.67 ± 0.01 9.47 ± 0.14

6. Experimental results

The final settings resulting from the grid-search procedure are
listed in Table 1. It can be seen that, except for the LORENZ dataset,
there is a tendency towards selecting large values of ρ. Output
feedback is needed only for the N10 dataset, while it is found
unnecessary in the other three datasets. The optimal input scaling
αf is ranging in the interval [0.5, 0.9], while the optimal teacher
scaling αt is small in the majority of cases.

The average NRMSE and training times (in seconds) for C-ESN
are provided in Table 2 as a reference. Clearly, NRMSE and training
time for C-ESN do not depend on the size of the agents’ network,
and they can be used as an upper baseline for the results of the
distributed algorithms. Since we are considering the same amount
of training data for each dataset, and the same reservoir’s size,
the training times in Table 2 are roughly similar, except for the
LORENZ dataset, which has 4 inputs compared to the other three
datasets (considering also the unitary input). As we stated earlier,
performance of C-ESN are competitive with the state-of-the-art
for all the four datasets. Moreover, we can see that it is extremely
efficient to train, taking approximately 9 s in all cases.

To study the behavior of the decentralized procedures when
training data is distributed, we plot the average error for the three
algorithms, when varying the number of nodes in the network,
in Fig. 3(a)–(d). The average NRMSE of C-ESN is shown as dashed
black line, while the errors of L-ESN and ADMM-ESN are shown
with blue squares and red circles respectively. Clearly, L-ESN is
performing worse than C-ESN, due to its partial view on the
training data. For small networks of 5 nodes, this gap may not be
particularly pronounced. This goes from a 3% worse performance
on the LORENZ dataset, up to a 37% decrease in performance for the
N10 dataset (going from an NRMSE of 0.08 to an NRMSE of 0.11).
The gap is instead substantial for large networks of up to 25 nodes.
For example, the error of L-ESN is more than twice that of C-ESN
for the N10 dataset, and its performance is 50% worse in the MKG
dataset. Albeit these results are expected, they are evidence of the
need for a decentralized training protocol for ESNs, able to take into
account all the local datasets.

As is clear from Fig. 3, ADMM-ESN is able to perfectly track
the performance of the centralized solution in all situations. A
small gap in performance is present for the two predictions tasks
when considering large networks. In particular, the performance
of ADMM-ESN is roughly 1% worse than C-ESN for networks
of 25 nodes in the datasets MKG and LORENZ. In theory, this
gap can be reduced by considering additional iterations for the

S. Scardapane et al. / Neural Networks 78 (2016) 65–74 73
ADMMprocedure, although thiswould be impractical in realworld
applications.

Training time requested by the three algorithms is shown
in Fig. 4(a)–(d). The training time for L-ESN and ADMM-ESN is
averaged throughout the agents. Since the computational time of
training an ESN is mostly related to the matrix inversion in Eq. (6),
training time is monotonically decreasing in L-ESN with respect to
the number of nodes in the network (the higher the number of
agents, the lower the amount of data at every local node). Fig. 4
shows that the computational overhead requested by the ADMM
procedure is limited. In the best case, the N10 dataset with 10
nodes, it required only 0.3 s more than L-ESN, as shown from
Fig. 4(a). In theworst setting, the EXTPOLY datasetwith 15 nodes, it
required 2.2 smore, as shown fromFig. 4(b). In all settings, the time
requested by ADMM-ESN is significantly lower compared to the
training time of its centralized counterpart, showing it usefulness
in large scale applications. Once again, it should be stressed that
this analysis does not take into consideration the communication
overhead between agents, which depends strictly on the actual
network technology. With respect to this point, we note that the
DAC procedure has been extensively analyzed over a large number
of realistic networks (Barbarossa et al., 2013), showing competitive
performance in most situations.

7. Conclusions

In this paper we have introduced a decentralized algorithm for
training an ESN, in the case where data is distributed through-
out a network of interconnected nodes. The proposed algorithm
demonstrated good potential to resolve some benchmark prob-
lems where datasets are large and stored in a decentralized man-
ner. It has multiple real-world applications in big data scenarios,
particularly for large scale prediction over WSNs, or for decen-
tralized classification of multimedia data. It is a direct application
of the ADMM procedure, which we employ in our algorithm be-
cause of the following two reasons: (i) communication between
nodes is restricted to local exchanges for the computation of an
average vector, without reliance on a centralized controller; (ii)
there is no need for the nodes to communicate training data be-
tween them, which is crucial in big data scenarios. Experimental
results onmultiple benchmarks, related to non-linear system iden-
tification and chaotic time-series prediction, demonstrated that it
is able to efficiently track a purely centralized solution, while at
the same time imposing a small computational overhead in terms
of vector–matrix operations requested to the single node. Commu-
nication overhead, instead, is given by the iterative application of
a DAC protocol. This represents a first step towards the develop-
ment of data-distributed strategies for general RNNs, which would
represent invaluable tools in real world applications. Future lines
of research involve considering different optimization procedures
with respect to ADMM, or more flexible DAC procedures. Addi-
tionally, although in this paper we have focused on batch learn-
ing, we envision to develop online strategies inspired to the CBL
framework.

References

Bakir, G. (2007). Predicting structured data. MIT press.
Barbarossa, S., Sardellitti, S., & Di Lorenzo, P. (2013). Distributed detection and

estimation in wireless sensor networks. In R. Chellapa, & S. Theodoridis (Eds.),
E-Reference signal processing (pp. 329–408). Elsevier.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization
and statistical learning via the alternating direction method of multipliers.
Foundations and Trends R⃝ in Machine Learning , 3(1), 1–122.

Butcher, J. B., Verstraeten, D., Schrauwen, B., Day, C. R., & Haycock, P. W. (2013).
Reservoir computing and extreme learningmachines for non-linear time-series
data analysis. Neural Networks, 38, 76–89.
Campolucci, P., Uncini, A., Piazza, F., & Rao, B. D. (1999). On-line learning algorithms
for locally recurrent neural networks. IEEE Transactions on Neural Networks,
10(2), 253–271.

Cattivelli, F. S., Lopes, C. G., & Sayed, A. H. (2008). Diffusion recursive least-squares
for distributed estimation over adaptive networks. IEEE Transactions on Signal
Processing , 56(5), 1865–1877.

Cevher, V., Becker, S., & Schmidt, M. (2014). Convex optimization for big data:
scalable, randomized, and parallel algorithms for big data analytics. IEEE Signal
Processing Magazine, 31(5), 32–43.

Chu, C.-T., Kim, S. K., Lin, Y. A., & Yu, Y. Y. (2007). Map-reduce for machine
learning on multicore. In Advances in neural information processing systems
(pp. 281–288).

Dean, J., Corrado, G., Monga, R., Chen, K., Devin,M., Mao,M., et al. (2012). Large scale
distributed deep networks. In Advances in neural information processing systems
(pp. 1223–1231).

Di Lorenzo, P., & Sayed, A. H. (2013). Sparse distributed learning based on diffusion
adaptation. IEEE Transactions on Signal Processing , 61(6), 1419–1433.

Forero, P. A., Cano, A., & Giannakis, G. B. (2010). Consensus-based distributed
support vector machines. The Journal of Machine Learning Research, 11,
1663–1707.

Georgopoulos, L., & Hasler, M. (2014). Distributedmachine learning in networks by
consensus. Neurocomputing , 124, 2–12.

Hermans, M., & Schrauwen, B. (2013). Training and analysing deep recurrent neural
networks. In Advances in neural information processing systems (pp. 190–198).

Honeine, P., Richard, C., Bermudez, J. C. M., & Snoussi, H. (2008). Distributed
prediction of time series data with kernels and adaptive filtering techniques
in sensor networks. In Proceedings of the 42nd Asilomar conference on signals,
systems and computers (pp. 246–250). IEEE.

Igelnik, B., & Pao, Y.-H. (1995). Stochastic choice of basis functions in adaptive
function approximation and the functional-link net. IEEE Transactions on Neural
Networks, 6(6), 1320–1329.

Jaeger, H. (2002). Adaptive nonlinear system identification with echo state
networks. In Advances in neural information processing systems (pp. 593–600).

Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: predicting chaotic systems
and saving energy in wireless communication. Science, 304(5667), 78–80.

Li, D., Han, M., & Wang, J. (2012). Chaotic time series prediction based on a novel
robust echo state network. IEEE Transactions on Neural Networks and Learning
Systems, 23(5), 787–799.

Lin, X., Yang, Z., & Song, Y. (2009). Short-term stock price prediction based on echo
state networks. Expert Systems with Applications, 36(3), 7313–7317.

Lu, Y., Roychowdhury, V., & Vandenberghe, L. (2008). Distributed parallel support
vector machines in strongly connected networks. IEEE Transactions on Neural
Networks, 19(7), 1167–1178.

Luitel, B., & Venayagamoorthy, G. K. (2012). Decentralized asynchronous learning
in cellular neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 23(11), 1755–1766.

Lukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3(3), 127–149.

Martens, J., & Sutskever, I. (2011). Learning recurrent neural networkswith hessian-
free optimization. In Proceedings of the 28th international conference on machine
learning, ICML (pp. 1033–1040).

Mateos, G., Bazerque, J. A., & Giannakis, G. B. (2010). Distributed sparse linear
regression. IEEE Transactions on Signal Processing , 58(10), 5262–5276.

Monner, D., & Reggia, J. A. (2012). A generalized LSTM-like training algorithm for
second-order recurrent neural networks. Neural Networks, 25, 70–83.

Navia-Vázquez, A., Gutierrez-Gonzalez, D., Parrado-Hernández, E., & Navarro-
Abellan, J. J. (2006). Distributed support vector machines. IEEE Transactions on
Neural Networks, 17(4), 1091–1097.

Obst, O. (2014). Distributed fault detection in sensor networks using a recurrent
neural network. Neural Processing Letters, 40(3), 261–273.

Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1), 215–233.

Pao, Y.-H., & Takefuji, Y. (1992). Functional-link net computing: theory, system
architecture, and functionalities. Computer , 25(5), 76–79.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent
neural networks. In Proceedings of the 30th international conference on machine
learning.

Pearlmutter, B. A. (1995). Gradient calculations for dynamic recurrent neural
networks: A survey. IEEE Transactions on Neural Networks, 6(5), 1212–1228.

Predd, J. B., Kulkarni, S. R., & Poor, H. V. (2007). Distributed learning in wireless
sensor networks. IEEE Signal Processing Magazine, 56–69.

Predd, J. B., Kulkarni, S. R., & Poor, H. V. (2009). A collaborative training algorithm for
distributed learning. IEEE Transactions on Information Theory, 55(4), 1856–1871.

Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory recurrent
neural network architectures for large scale acoustic modeling. In Proceedings
of the annual conference of international speech communication association,
INTERSPEECH.

Sardellitti, S., Giona, M., & Barbarossa, S. (2010). Fast distributed average consensus
algorithms based on advection–diffusion processes. IEEE Transactions on Signal
Processing , 58(2), 826–842.

Scardapane, S., Nocco, G., Comminiello, D., Scarpiniti, M., & Uncini, A. (2014).
An effective criterion for pruning reservoir’s connections in echo state
networks. In 2014 International joint conference on neural networks (IJCNN)
(pp. 1205–1212). INNS/IEEE.

Scardapane, S.,Wang, D., Panella,M., & Uncini, A. (2015a). Distributed learningwith
random vector functional-link networks. Information Sciences, 301, 271–284.

http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref1
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref2
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref3
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref4
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref5
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref6
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref7
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref8
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref9
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref10
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref11
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref12
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref13
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref14
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref15
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref16
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref17
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref18
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref19
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref20
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref21
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref22
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref24
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref25
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref26
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref27
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref28
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref29
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref31
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref32
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref33
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref35
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref36
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref37

74 S. Scardapane et al. / Neural Networks 78 (2016) 65–74
Scardapane, S., Wang, D., Panella, M., & Uncini, A. (2015b). Distributed music
classification using random vector functional-link nets. In 2015 International
joint conference on neural networks (IJCNN). INNS/IEEE.

Schliebs, S., Mohemmed, A., & Kasabov, N. (2011). Are probabilistic spiking
neural networks suitable for reservoir computing? In 2011 International joint
conference on neural networks (IJCNN) (pp. 3156–3163). INNS/IEEE.

Shutin, D., & Kubin, G. (2008). Echo state wireless sensor networks. In 2008 IEEE
workshop on machine learning for signal processing (pp. 151–156).

Skowronski, M. D., & Harris, J. G. (2007). Automatic speech recognition using a
predictive echo state network classifier. Neural Networks, 20(3), 414–423.

Steil, J. J. (2007). Online reservoir adaptation by intrinsic plasticity for backpropa-
gation–decorrelation and echo state learning. Neural Networks, 20(3), 353–364.

Sutskever, I., Vinyals, O., & Le, Q. V. V. (2014). Sequence to sequence learning
with neural networks. In Advances in neural information processing systems
(pp. 3104–3112).

Tong, M. H., Bickett, A. D., Christiansen, E. M., & Cottrell, G. W. (2007). Learning
grammatical structure with echo state networks. Neural Networks, 20(3),
424–432.

Triefenbach, F., Jalalvand, A., Demuynck, K., & Martens, J.-P. (2013). Acoustic
modeling with hierarchical reservoirs. IEEE Transactions on Audio, Speech and
Language Processing , 21(11), 2439–2450.

Vandoorne, K., Dambre, J., Verstraeten, D., Schrauwen, B., & Bienstman, P. (2011).
Parallel reservoir computing using optical amplifiers. IEEE Transactions on
Neural Networks, 22(9), 1469–1481.
Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Verstraeten,
D., et al. (2014). Experimental demonstration of reservoir computing on a
silicon photonics chip. Nature Communications, 5.

Verstraeten, D., Schrauwen, B., d’Haene, M., & Stroobandt, D. (2007). An
experimental unification of reservoir computing methods. Neural Networks,
20(3), 391–403.

Verykios, V. S., Bertino, E., Fovino, I. N., Provenza, L. P., Saygin, Y., & Theodoridis, Y.
(2004). State-of-the-art in privacy preserving datamining.ACMSIGMODRecord,
33(1), 50–57.

Wu, X., Zhu, X., Wu, G.-Q., & Ding, W. (2014). Data mining with big data. The IEEE
Transactions on Knowledge and Data Engineering , 26(1), 97–107.

Xiao, L., Boyd, S., & Lall, S. (2005). A scheme for robust distributed sensor fusion
based on average consensus. In Fourth international symposium on information
processing in sensor networks, 2005 (pp. 63–70). IEEE.

Xue, Y., Yang, L., & Haykin, S. (2007). Decoupled echo state networks with lateral
inhibition. Neural Networks, 20(3), 365–376.

Yildiz, I. B., Jaeger, H., & Kiebel, S. J. (2012). Re-visiting the echo state property.
Neural Networks, 35, 1–9.

Zhang, B., Miller, D. J., & Wang, Y. (2012). Nonlinear systemmodeling with random
matrices: echo state networks revisited. IEEE Transactions on Neural Networks
and Learning Systems, 23(1), 175–182.

Zinkevich, M., Weimer, M., Li, L., & Smola, A. J. (2010). Parallelized stochastic
gradient descent. In Advances in neural information processing systems
(pp. 2595–2603).

http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref38
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref39
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref41
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref42
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref43
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref44
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref45
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref46
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref47
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref48
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref49
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref50
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref51
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref52
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref53
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref54
http://refhub.elsevier.com/S0893-6080(15)00143-4/sbref55

	A decentralized training algorithm for Echo State Networks in distributed big data applications
	Introduction
	Related work
	Data-distributed learning for feed-forward models
	Spatially distributed echo state networks

	Preliminaries
	Echo state networks
	Decentralized average consensus
	Alternating direction method of multipliers

	Data-distributed ESN
	Experimental setup
	Description of the datasets
	Description of the algorithms
	ESN architecture

	Experimental results
	Conclusions
	References

