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The Transductive Problem

* Vapnik argued that general induction may be
unnecessary in some cases.

“[...] when solving a problem of interest, do not

solve a more general problem as an
intermediate step.”

* The knowledge of the actual testing points should
improve the capabilities of the inference system.

* |In the Transductive setting, the output is not a model
but a set of predictions.
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A Theoretical Perspective

* To appreciate the theoretical difference, consider the
set of possible hypotheses H.

* In the transductive case, H is necessarily finite.

* This leads to an extension of inductive statistical
learning theory, resulting in the following “advice”:

Minimize the error on both training and testing
set while maximizing the margin.
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Notation

* The training set is S = {x;, y; 1l_v=1’ and we restrict to

the binary classification case y; = {0,1}.

e The testing set is U = {x;}/-H% 1. A possible labelling is

*

Y = yn+1 "-yN+M]T-

* Minimization is done over a generic Reproducing
Kernel Hilbert Space H with norm || - || 2.

* k() is the kernel associated to H.
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Transductive SVM

Standard Terms Transductive Term
A |
i
N+M
min 71 + CsZa +Cy Y G
I=N+1

S. L. yif(xl-)21—(i, ;= 0, i=1,..,N
yif(x)=1-¢, (=0, i=N+1,..,N+M

(; are slack variables controlling the error.
* (s and Cy are regularization parameters.
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T-SVM Learning

e T-SVM training results in a partly combinatorial
problem, due to the presence of the unknown labels.

e Several algorithms have been devised for its efficient
solution, depending on the simplifications that are
made.

* A good discussion can be found in:

[1] O. Chapelle, V. Sindhwani, and S. Keerthi, “Optimization
techniques for semi-supervised support vector machines,” Journal of
Machine Learning Research, vol. 9, pp. 203-233, 2008.
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Extreme Learning Machine

* An Extreme Learning Machine (ELM) is a model of the
form:

L
) = ) h)f; = h()TB
=1

* The hidden layer h(x)" is fixed before observing the
data.

 Typically, it is constructed by randomizing over a
known function g(x, 9).
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ELM Training

* The weights are found by a L,-regularized linear regression:

N
1 Cs
%nymﬁ+—.ff
1=

s.t. h(x)'B=>vy,—¢, ¢;=0, i

1,...,N

* A possible solution is given by:

-1
1
B=HT(C_SIN+HHT> y
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Transductive ELM

 We propose the following transductive model:

1 C N C N+M

] S U

min 5|Iﬁ|l%+—2 E (?+—2 | E G
=1 i=N+1

S.t. h(xl-)Tﬁ =>v;i —(;, (;=0, i=1,..,N
h(x)'B=vy;-¢, (0, i=N+1,.,.M

* Back-substituting the solution for B we obtain a
fully combinatorial problem.
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T-ELM Training

* A simplification to the minimization problem can be
derived:

B =H"(C"I+HH) [;']
H=H"(C'1+HH")"! = [H, H,]

|

B =H,y+ H,y’
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Two Moons Dataset
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Setting

e ELM and T-ELM feature vectors are found by
randomizing over:

1
1+ exp{—(a’x + b)}

g(x,a,b) =

 T-ELM is solved with a standard Genetic Algorithm.

* Parameters are found by cross-validating over an
independent validation set.
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Results

“ﬂ-_ T

0,843

2 200 0,47 0,5 0,58

* The T-ELM model does not improve in the normal
situation.

* However, it gives a substantial improvement in the
harder situation.

 We hypothesize the first situation is due to poor
performance of the GA.

SAP]ENZA A Preliminary Study on Transductive ELM 26/05/2013

UNIVERSITA DI ROMA
15




Open Problems

1. Our formulation is not trivially extended to
regression. See for example:

[1] C. Cortes and M. Mohri, “On transductive regression,”
Advances in Neural Information Processing Systems, 2007.

2. There is the need of a specialized solver for the
minimization problem.
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Conclusions

We proposed a transductive model which is
simpler than T-SVM.

Some preliminary results showed good results
with unbalanced datasets.

Further work is needed for a realistic
implementation.
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Thanks for your attention!

Any Questions?
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