
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 1

Complex-Valued Neural Networks With
Nonparametric Activation Functions

Simone Scardapane , Steven Van Vaerenbergh, Senior Member, IEEE,
Amir Hussain , Senior Member, IEEE, and Aurelio Uncini, Member, IEEE

Abstract�Complex-valued neural networks (CVNNs) are a
powerful modeling tool for domains where data can be naturally
interpreted in terms of complex numbers. However, several ana-
lytical properties of the complex domain (such as holomorphicity)
make the design of CVNNs a more challenging task than their real
counterpart. In this paper, we consider the problem of �exible ac-
tivation functions (AFs) in the complex domain, i.e., AFs endowed
with suf�cient degrees of freedom to adapt their shape given the
training data. While this problem has received considerable atten-
tion in the real case, very limited literature exists for CVNNs, where
most activation functions are generally developed in a split fashion
(i.e., by considering the real and imaginary parts of the activation
separately) or with simple phase-amplitude techniques. Leveraging
over the recently proposed kernel activation functions, and related
advances in the design of complex-valued kernels, we propose the
�rst fully complex, nonparametric activation function for CVNNs,
which is based on a kernel expansion with a �xed dictionary that
can be implemented ef�ciently on vectorized hardware. Several ex-
periments on common use cases, including prediction and channel
equalization, validate our proposal when compared to real-valued
neural networks and CVNNs with �xed activation functions.

Index Terms�Neural networks, activation functions, kernel
methods, complex domain.

I. INTRODUCTION

OVER the last years, machine learning techniques have
obtained impressive results in a wide range of fields, espe-

cially when dealing with supervised problems [1]–[3]. The ma-
jority of these applications has focused on the case of real-valued
data: as an example, most of the deep learning frameworks
currently used today can only work with floating point (or inte-
ger) numbers. Several applicative domains of interest, however,

Manuscript received February 22, 2018; revised June 25, 2018 and August 18,
2018; accepted September 15, 2018. The work of S. Scardapane was supported
by the Italian MIUR, “Progetti di Ricerca di Rilevante Interesse Nazionale,”
GAUChO Project, under Grant 2015YPXH4W_004. The work of S. Van Vaeren-
bergh was supported by the Ministerio de Economı́a, Industria y Competitivi-
dad (MINECO) of Spain under Grants TEC2014-57402-JIN (PRISMA) and
TEC2016-81900-REDT (KERMES). The work of A. Hussain was supported
by the UK Engineering and Physical Science Research Council (EPSRC) under
Grant EP/M026981/1. (Corresponding author: Simone Scardapane.)

S. Scardapane and A. Uncini are with the Department of Information Engi-
neering, Electronics and Telecommunications (DIET), Sapienza University of
Rome, 00184 Rome, Italy (e-mail:, simone.scardapane@uniroma1.it; aurelio.
uncini@uniroma1.it).

S. Van Vaerenbergh is with the Department of Communications Engi-
neering, University of Cantabria, 39005 Santander, Spain (e-mail:, steven.
vanvaerenbergh@unican.es).

A. Hussain is with the School of Computing, Edinburgh Napier University,
Edinburgh EH10 5DT, Scotland, U.K. (e-mail:,a.hussain@napier.ac.uk).

Digital Object Identifier 10.1109/TETCI.2018.2872600

exhibit data that can be more naturally modeled using complex-
valued algebra, from image processing to time-series prediction,
bioinformatics, and robotics’ control (see [4], [5] for a variety of
examples). While complex data can immediately be transformed
to a real domain by considering the real and imaginary compo-
nents separately, the resulting loss of phase information gives
rise to algorithms that are generally less efficient (or expressive)
than alternative methods able to work directly in the complex
domain, as evidenced by a large body of literature [6]. Due to
this, many learning algorithms have been extended to deal
with complex data, including linear adaptive filters [5], [7],
kernel methods [8]–[10], component analysis [11], and neural
networks (NNs) [12]–[18]. We consider this last class of
algorithms here.

Despite the apparent similarity between the real and complex
domains, working directly in the latter is challenging because
of several non-intuitive analytical properties of the complex al-
gebra. Most notably, almost all cost functions involved in the
training of complex models require non-analytic (also known
as non-holomorphic [8]) functions, so that standard complex
derivatives cannot be used in the definition of the optimiza-
tion algorithms. This is why several algorithms defined before
the last decade considered optimizing the real and imaginary
components separately, resulting in a more cumbersome nota-
tion which somehow hindered their development [19]. More
recently, this problem has been solved by the adoption of the
so-called CR-calculus (or Wirtinger’s calculus), allowing to de-
fine proper complex derivatives even for non-analytic functions
[20], [21], by considering explicitly their dependence on both
their arguments and their complex conjugates. We describe CR-
calculus more in depth in Section II.

When dealing with neural networks, another challenging
task concerns the design of a proper activation function in the
complex domain. In the real-valued case, the use of the rectified
linear unit (ReLU) has been instrumental in the development of
truly deep networks [22], [23], and has spun a wave of further
research in the topic, see [24], [25] for very recent examples.
In the complex case, Liouville’s theorem asserts that the only
complex function which is analytic and bounded at the same
time is a constant one. Due to the preference for bounded
activation functions before the introduction of the ReLU, many
authors in the past preferred bounded functions to analytic
ones, most notably in a split organization, wherein the real and
imaginary parts of the activations are processed separately [26],
or in a phase-amplitude configuration, in which the nonlinearity

2471-285X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0881-8344
https://orcid.org/0000-0002-8080-082X
mailto:simone.scardapane@uniroma1.it
mailto:aurelio.uncini@uniroma1.it
mailto:aurelio.uncini@uniroma1.it
mailto:steven.vanvaerenbergh@unican.es
mailto:steven.vanvaerenbergh@unican.es
mailto:ahu@cs.stir.ac.uk

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

is applied only to the magnitude component, while the phase
component is preserved [12]. Even extending the ReLU function
to the complex domain has been shown to be non-trivial, and
several authors have proposed different variations [14], [16].

In this paper, we consider the problem of adapting activation
functions in the complex domain. For real-valued NNs, there
is a large body of literature pointing to the fact that endowing
activation functions with several degrees of freedom can im-
prove the accuracy of the trained networks, ease the flow of the
back-propagated gradient, or vastly simplify the design of the
network. In the simplest case, we can consider parametric func-
tions having only a few (generally less than three) parameters per
neuron, such as the parametric ReLU [27] or the S-shaped ReLU
[28]. More generally, we can think of non-parametric activation
functions, that can adapt to potentially any shape in a purely
data-driven fashion, with a flexibility that can be controlled by
the user, and to which standard regularization techniques can be
applied. In the real-valued case, much research has been devoted
to the topic, including the design of Maxout networks [29], adap-
tive piecewise linear (APL) units [30], spline functions [31], and
the recently proposed kernel activation functions (KAFs) [32].
When dealing with complex-valued NNs (CVNNs), however,
only a handful of works have considered adapting the activation
functions, and only in the simplified parametric case [17], or
when working in a split configuration [11]. In this sense, how
to design activation functions that can adapt to the training data
while remaining simple to implement remains an open question.

A Contributions of the Paper

We introduce a new family of non-parametric activation func-
tions in the complex domain, building upon the idea of KAFs
[32]. In particular, by building on recent works on complex-
valued reproducing kernel Hilbert spaces [8] (RKHSs), we
propose the first adaptable activation function directly de-
fined in the complex domain. All the functions we introduce
can leverage highly vectorized CPU/GPU libraries for matrix
multiplication.

The basic idea of KAFs, which were defined in [32] only in
the real-valued case, is to exploit a kernel expansion at every
neuron, in which the elements of the kernel dictionary are fixed
beforehand, while the mixing coefficients are adapted through
standard optimization techniques. Here, we propose two dif-
ferent techniques to apply the idea of KAFs in the context of
CVNNs. In the first case, we use a split combination where the
real and the imaginary components are processed by two inde-
pendent KAFs sharing the same dictionary. In the second case,
based on the complex-valued RKHS theory, we are able to re-
define the KAF directly in the complex domain, also describing
several choices for the kernel function. We show via multiple
experimental comparisons that CVNNs endowed with complex-
valued KAFs can outperform both real-valued NNs and CVNNs
having only fixed or parametric activation functions.

B. Organization of the Paper

In Section II we introduce the basic theoretical elements
underpinning optimization in a complex domain and CVNNs.

Then, in Section III we summarize research on designing activa-
tion functions for CVNNs. The two proposed complex KAFs are
given in Section IV (split KAF) and Section V (fully complex
KAF). We briefly discuss implementation aspects of CVNNs in
Section VI. Finally, we provide an experimental evaluation in
Section VII before concluding in Section VIII.

C. Notation

We denote vectors using boldface lowercase letters, e.g., a;
matrices are denoted by boldface uppercase letters, e.g., A. All
vectors are assumed to be column vectors. A complex number
z � C is represented as z = a + ib, where a = �{z} and b =
�{z} are, respectively, the real part and the imaginary part
of the number, and i =

�
�1. Sometimes, we also use zr and

zi to denote the real and imaginary parts of z for simplicity.
Magnitude and phase of a complex number are given by |z| and
�(z) respectively. z� = a � ib denotes the complex conjugate
of z. Other notation is introduced in the text when appropriate.

II. PRELIMINARIES

A. Complex Algebra and CR-Calculus

We start by introducing the basic theoretical concepts re-
quired to define a complex-valued function and to optimize it.
We consider scalar functions first, and discuss the multivariate
extension later on. Any complex-valued function f : C � C
can be written as:

f(z) = u(a, b) + iv(a, b) , (1)

where u(•, •) and v(•, •) are real-valued functions in two argu-
ments. The function f is said to be real-differentiable if the
partial derivatives of u and v with respect to a and b are defined.
Additionally, the function is called analytic (or holomorphic) if
it satisfies the Cauchy-Riemann conditions:

�u(a, b)
�a

=
�v(a, b)

�b
and

�v(a, b)
�a

= �
�u(a, b)

�b
. (2)

Only analytic functions admit a complex derivative in the stan-
dard sense, but most functions used in practice for CVNNs do
not satisfy (2) (such as functions with real-valued outputs for
which v(a, b) = 0 everywhere). In this case, CR-calculus [21]
provides a theoretical framework to handle non-analytic func-
tions directly in the complex domain without the need to switch
back and forth between definitions in the complex domain and
gradients’ computations in the real one.

The main idea of CR-calculus is to consider f explicitly as
a function of both z and its complex conjugate z� = a � ib,
which we denote as f(z, z�). If f is real-differentiable, then it
is also analytic with respect to z when keeping z� constant and
vice versa. Thus, we can define a pair of (complex) derivatives
as follows [20], [21]:

R-derivative �
�f(z, z�)

�z

����
z �=const

=
1
2

�
�f
�a

� i
�f
�b

�
, (3)

R*-derivative �
�f(z, z�)

�z�

����
z=const

=
1
2

�
�f
�a

+ i
�f
�b

�
. (4)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SCARDAPANE et al.: COMPLEX-VALUED NEURAL NETWORKS WITH NONPARAMETRIC ACTIVATION FUNCTIONS 3

Everything extends to multivariate functions f : Cn � C of a
complex vector z � Cn by defining the cogradient and conju-
gate cogradient operators:

�z =
�

�
�z1

, . . . ,
�

�zn

�T

, (5)

�z� =
�

�
�z�

1
, . . . ,

�
�z�

n

�T

. (6)

Then, a necessary and sufficient condition for z0 to be a mini-
mum of f is either �z0 f(z0 , z�

0) = 0 or �z�
0
f(z0 , z�

0) = 0 [20].
CR-calculus inherits most of the standard properties of the real
derivatives, including the chain rule and the differential rule, see
[21]. For the important case where the output of the function is
real-valued (as is the case for the loss function when optimizing
CVNNs) we have the additional property:

�
�zf(z, z�)

��
= �z�f(z, z�) . (7)

Combined with the Taylor expansion of the function, an imme-
diate corollary of this property is that the direction of steepest
ascent of f in the point z is given by the conjugate cogradi-
ent operator evaluated in that point [21]. Up to a multiplicative
constant term, this result coincides with taking the steepest as-
cent direction with respect to the real derivatives, allowing for a
straightforward implementation in most optimization libraries.

B. Complex-Valued Neural Networks

We now turn our attention to the approximation of multivari-
ate complex-valued functions. A generic CVNN is composed
by stacking L layers via the alternation of linear and nonlin-
ear operations. In particular, the l-th layer is described by the
following equation:

hl = g (Wlhl�1 + bl) , (8)

where hl�1 � CNl �1 is the Nl�1-dimensional input to the layer,
Wl � CNl ×Nl �1 and bl � CNl are adaptable weight matri-
ces, and g(•) is a (complex-valued) activation function ap-
plied element-wise, which will be discussed more in depth later
on. By definition, x = h0 denotes the input to the network,
while �y = hL denotes the final output, which we assume one-
dimensional for simplicity. Some results on the approximation
properties of this model are given in [13], while [17] describes
techniques to initialize the adaptable linear weights in the com-
plex domain.

Given I input/output pairs S = {xn , yn}I
n=1 , we train the

CVNN by minimizing a cost function given by:

J(w) =
I�

n=1

l(yn , �yn) , (9)

where w � CQ collects all the adaptable weights of the network
and l(•, •) is a loss function, such as the squared loss:

l(y, �y) = |y � �y|2 = (y � �y) (y � �y)� . (10)

Following the results described in the previous section, a ba-
sic steepest descent approach to optimize (9) is given by the

following update equation at the t-th iteration:

wt+1 = wt � µ�w �J(w, w�) , (11)

where µ � R is the learning rate. More in general, we can use
noisy versions of the gradient given by sampling a mini-batch
of elements, or accelerate the optimization process by adapt-
ing most of the state-of-the-art techniques used for real-valued
neural networks [33]. We can also apply some techniques that
are specific to the complex domain. For example [34], inspired
by the theory of widely linear adaptive filters, augments the
input to the CVNN with its complex conjugate x�. Additional
improvements can be obtained by replacing the real-valued µ
with a complex-valued learning rate [35], which can speed up
convergence in some scenarios.

III. COMPLEX-VALUED ACTIVATION FUNCTIONS

As we stated in the introduction, choosing a proper activation
function in (8) is more challenging than in the real case because
of Liouville’s theorem, stating that the only complex-valued
functions that are bounded and analytic everywhere are con-
stants. So in practice, one must choose between boundedness
and analyticity. Before the introduction of the ReLU activa-
tion [22], almost all activation functions in the real case were
bounded. Consequently, initial approaches to design CVNNs
always preferred non-analytic functions in order to preserve
boundedness, most commonly by applying real-valued activa-
tion functions separately to the real and imaginary parts [26]:

g(z) = gR (� {z}) + igR (� {z}) , (12)

where z is a generic input to the activation function in (8), and
gR (•) is some real-valued activation function, e.g., sigmoid. This
is called a split activation function. As a representative example,
the magnitude and phase of the split-tanh when varying the
activation are given in Fig. 1. Early proponents of this approach
can be found in [36] and [19].

Another common class of non-analytic activation func-
tions are the phase-amplitude (PA) functions popularized by
[12], [37]:

g(z) =
z

c + |z|/r
, (13)

g(z) = tanh
�

|z|
m

	
exp {i�(z)} , (14)

where �(z) is the phase of z, while c, r and m are positive
constant which in most cases are set equal to 1. PA functions can
be seen as the natural generalization of real-valued squashing
functions such as the sigmoid, because the output g(z) has
bounded magnitude but preserves the phase of z.

A third alternative is to use fully-complex activation func-
tions that are analytic and bounded almost everywhere, at the
cost of introducing a set of singular points. Among all possible
transcendental functions, it is common to consider the complex-
valued extension of the hyperbolic tangent, defined as [13]:

g(z) = tanh {z} =
exp {z} � exp {�z}
exp {z} + exp {�z}

, (15)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Fig. 1. Example of split activation function having gR (•) = tanh(•) in (12) processing both the real and the imaginary parts of the input. (a) Magnitude of the
output. (b) Phase of the output.

possessing periodic singular points at the imaginary points
i (0.5 + n)�, with n � N. However, careful scaling of the in-
puts and of the initial weights allows to avoid these singularities
during training.

Finally, several authors have proposed extensions of the popu-
lar real-valued ReLU function ReLU(s) = max {0, s}. As dis-
cussed in [17], a simple split configuration as in (12) results
in poor performance. An improved complex-valued ReLU is
designed in [16] as:

g(z) =

z if � {z} , � {z} 	 0 ,

0 otherwise
. (16)

Alternatively, inspired by the PA functions to maintain the phase
of the activation value, [14] propose the following modReLU
function:

g(z) = ReLU (|z| + b) exp {i�(z)} , (17)

where b is an adaptable parameter defining a radius along which
the output of the function is 0. Another extension, the complex
cardioid, is advanced in [38]:

g(z) =
1
2

�
1 + cos {�(z)}

�
z , (18)

maintaining phase information while attenuating the magnitude
based on the phase itself. For real-valued inputs, (18) reduces to
the ReLU.

Note that in all cases these proposed activation functions
are fixed or endowed with a very small degree of flexibility
(as in (17)). In the following sections we describe a principled
technique to design non-parametric activation functions for use
in CVNNs.

IV. SPLIT KERNEL ACTIVATION FUNCTIONS

Our first proposal is a split function as in (12), where non-
parametric (real-valued) functions for gR (•) are used in place
of fixed ones. Specifically, we consider the kernel activation
function (KAF) proposed in [32], which will also serve as a

base for the fully complex-valued proposal of the following
section. Here, we introduce the basic elements of the KAF, and
we refer to the original paper [32] for a fuller exposition.

The basic idea of a KAF is to model each activation function
as a one-dimensional kernel model, where the kernel elements
are chosen in a proper way to obtain an efficient backpropagation
step. Consider the generic activation function gR (s), where s
denotes either the real or the imaginary part of z as in (12).
To obtain a flexible shape, we can model a linear predictor on a
high-dimensional feature space �(s) of the activation. However,
this process becomes infeasible for a large number of feature
transformations, and cannot handle infinite-dimensional feature
spaces. For feature maps associated to a reproducing kernel
Hilbert space H with kernel �(•, •), we can write an equivalent
linear model by exploiting the representer theorem as:

gR (s) =
D�

n=1

�n� (s, dn) , (19)

where {�n}D
n=1 are the mixing coefficients and {dn}D

n=1 make
up the so-called dictionary of the kernel expansion [39], [40].
Remember that a function �(•, •) is a valid kernel function if
it respects the positive semi-definiteness property, i.e., for any
possible choice of {�n}D

n=1 and {dn}D
n=1 in (19):

D�

n=1

D�

m=1

�n�m � (dn , dm) 	 0 . (20)

In the context of a neural network, the dictionary elements
cannot be selected a priori because they would change at every
step of the optimization algorithm depending on the distribu-
tion of the activation values. Instead, we exploit the fact that we
are working with one-dimensional kernels to fix the elements
beforehand, and only adapt the mixing coefficients in the opti-
mization step. In particular, we select the elements d1 , . . . , dD
by sampling D values over the x-axis, uniformly around zero. In
this way, the value D becomes a hyper-parameter controlling the
flexibility of the approach: for larger D we obtain a more flexible

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SCARDAPANE et al.: COMPLEX-VALUED NEURAL NETWORKS WITH NONPARAMETRIC ACTIVATION FUNCTIONS 5

method at the cost of a larger number of adaptable parameters.
In general, since the function is only a small component of a
much larger neural network, values in the range D � [10, 20]
are sufficient for most applications. As the number of parame-
ters per neuron can potentially grow without bound depending
on the choice of D, we refer to such activation functions as
non-parametric.

The same dictionary is shared across the entire neural net-
work, but with two different sets of mixing coefficients for the
real and imaginary parts of each neuron. Due to this, an efficient
implementation of the proposed split-KAF is straightforward.
In particular, consider the vector z containing the Nl (complex)
activations of a layer following the linear operations in (8). We
build the matrix KR � RNl ×D by computing all the kernel val-
ues between the real part of the activations and the elements of
the dictionary (and similarly for KI using the imaginary parts),
and we compute the final output of the layer as:

hl = (AR
 KR) 1 + i (AI
 KI) 1 , (21)

where
 represents element-wise product (Hadamard product),
AR , AI � RNl ×D are matrices collecting row-wise all the mix-
ing coefficients for the real and imaginary components of the
layer, and 1 � RD is a vector of ones. For handling batches
of elements (or convolutive layers), we only need to slightly
modify (21) by adding additional trailing dimensions.

For all our experiments, we consider the 1D Gaussian kernel
defined as:

�(s, dn) = exp
�

�� (s � dn)2
�

, (22)

where � � R is the inverse of the kernel bandwidth. In the pro-
posed KAF scheme, the values of the dictionary are chosen
according to a grid, and as such the optimal bandwidth param-
eter depends uniquely on the grid resolution. In particular, the
following rule-of-thumb was proposed in [32] and it is used in
our experiments:

� =
1

6�2 , (23)

where � is the distance between the grid points. In order to
provide an additional degree of freedom to our method, we
also optimize a single � per layer via back-propagation after
initializing it following (23).

V. FULLY-COMPLEX KERNEL ACTIVATION FUNCTIONS

While most of the literature on kernel methods in machine
learning has focused on the real-valued case, it is well known that
the original mathematical treatment originated in the complex-
valued domain [41]. In the context of the kernel filtering litera-
ture, techniques to build complex-valued algorithms by separat-
ing the real and the imaginary components (as in the previous
section) are called complexification methods [8]. However, re-
cently several authors have advocated for the direct use of (pure)
complex-valued kernels leveraging the complex-valued treat-
ment of RKHSs for a variety of fields, as surveyed in the intro-
duction.

From a theoretical standpoint, defining complex RKHSs
and kernels is relatively straightforward. As an example,

Fig. 2. A visual example of sampling the dictionary for the complex-valued
KAF, in the complex plane, for D = 4 in the range [�1.5, 1.5].

a one-dimensional complex-function �C : C × C � C is
positive semi-definite if and only if:

D�

n=1

D�

m=1

��
n�m � (dn , dm) 	 0 , ��n , �m , dn , dm � C , (24)

where all values are now defined in the complex-domain. Any
PSD function is then a valid kernel function. Based on this,
in this paper we also propose a fully-complex, non-parametric
KAF by defining (19) directly in the complex domain, without
the need for split functions:

g(z) =
D�

n=1

D�

m=1

�n,m �C (z, dn + idm) , (25)

where the mixing coefficients {�n,m }D
n,m=1 are now defined

as complex numbers. Note that, in order for the dictionary to
provide a dense sampling of the space of complex numbers, we
now consider D2 fixed elements arranged over a regular grid,
an example of which is depicted in Fig. 2. Due to this, we now
have D2 adaptable mixing coefficients per neuron, as opposed
to 2D in the split case. We counter-balance this by selecting a
drastically smaller D (see the experimental section).

An immediate complex-valued extension of the Gaussian ker-
nel in (22) is given by:

�C(z, d) = exp
�

�� (z � d�)2
�

, (26)

where in our experiments the bandwidth hyper-parameter �
is selected using the same rule-of-thumb as before and then
adapted layer-wise. A complete analysis of the feature space as-
sociated to (26) is given in [42]. In order to gain some informal
understanding, we can write the kernel explicitly in terms of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Fig. 3. Example of Gaussian complex kernel in (26) with d = 0 + i0 and � = 0.01. Notice the scale of the axes (more details are provided in the text). (a) Real
part of the output. (b) Imaginary part of the output.

real and imaginary components of its arguments:

�C(z, d) = exp

��|zr � dr |2
�

exp

�|zi + di |2

�

•
�
cos {2� (zr � dr) (zi + di)}

�i sin {2� (zr � dr) (zi + di)}
�

. (27)

By analyzing the previous expression, we see that the complex-
valued Gaussian kernel has several properties which are counter-
intuitive if one is used to work with its real-valued restriction.
First of all, (26) cannot be interpreted as a standard similarity
measure, because it depends on its arguments only via (zr � dr)
and (zi + di). For the same reasons, the kernel is not stationary,
and it has an additional oscillatory behavior. We refer to Fig. 3
(or to [10, Section IV-A]) for an illustration of the kernel when
fixing the second argument.

For these reasons, another extension of the Gaussian kernel to
the complex domain is given in [8], where the authors propose
to build a whole family of complex-valued kernels starting from
any real-valued one �R as follows:

�C (z, d) = �R (zr , dr) + �R (zi, di)

+ i (�R (zr , di) � �R (zi, dr)) . (28)

The new complex-valued kernel is called an independent kernel.
By plugging the real-valued Gaussian kernel (22) in the previous
expression, we obtain a complex-valued expression that can still
be interpreted as a similarity measure between the two points.

Note that several alternative kernels are also possible, many
of which are specific to the complex-valued case, a prominent
example being the Szego kernel [8]:

�C(z, d) =
1

(1 � zd�)2 . (29)

VI. NOTES ON IMPLEMENTATION

In the previous sections we have described two complete
functional models of complex-valued neural networks based on
non-parametric activation functions. Nevertheless, the design

of the architecture and the training of a CVNN in a practical
implementation involve several additional procedures. We now
briefly discuss these procedures and comment on how they must
be adapted for the complex-valued case w.r.t. real-valued neural
networks (RVNNs).

A. Hyperparameter Optimization

The optimization of real-valued hyperparameters (such as
hidden layer size) in CVNNs is equivalent to RVNN practices.
As such, it can be dealt with by standard hyperparameter
optimization methods including grid search, randomized search
[43], and Bayesian optimization [44]. The optimization of
complex-valued hyperparameters (such a complex step size)
has not been explored yet in the literature to the best of our
knowledge, and it is beyond the scope of this work. Before
considering a fully complex hyperparameter optimization,
however, a simple workaround would consist in splitting the
complex-valued hyperparameters in real and imaginary part,
similar to the strategy followed in Section IV.

B. Weight Initialization

Standard initialization procedures for the linear weights in
RVNNs have been described in [45] and [27]. Recently, an ex-
tension of these procedures to the complex-valued case was pro-
posed [17], which we adopt in the experiments of Section VII.
In particular, we initialize the complex weights of the l-th layer

by drawing their magnitudes from N
�
0, 2

Nl

�
and their phases

from U(��, �), where Nl is the number of neurons in this layer.

C. Deep Networks

The construction of deep complex-valued architectures re-
quires overcoming several practical challenges, similar to those
that appear in real-valued networks. In the experiments of
Section VII, we only consider shallow networks that contain
at most three hidden layers. Nevertheless, the interested reader
may refer to the discussion on deep complex-valued networks

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SCARDAPANE et al.: COMPLEX-VALUED NEURAL NETWORKS WITH NONPARAMETRIC ACTIVATION FUNCTIONS 7

in [17], which proposes among others a complex-valued batch
normalization technique.

VII. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the proposed
activation functions on several benchmark problems, including
channel identification in Section VII-A, wind prediction in
Section VII-B, and multi-class classification in the complex
domain in Section VII-C. In all cases, we linearly preprocess the
real and the imaginary components of the input features to lie in
the [�1,+1] range. We regularize all parameters with respect
to their squared absolute value (which is equivalent to standard
�2 regularization applied on the real and imaginary components
separately), but we exclude the bias terms and the window
parameter in (17). We select the strength of the regularization
term and the size of the networks based on previous literature
or on a cross-validation procedure, as described below. For
optimization, we use a simple complex-valued extension of the
Adagrad algorithm, which computes a per-parameter learning
rate weighted by the squared magnitude of the gradients
themselves. For each iteration, we construct a mini-batch
by randomly sampling 40 elements from the entire training
dataset. All algorithms have been implemented in Python using
the Autograd library [46].

A. Experiment 1 - Channel Identification

Our first experiment is a standard benchmark in the complex-
valued literature, i.e., a channel identification task [47]. The
input to the channel is generated as:

sn =
��

1 � 	2Xn + i	Yn

�
, (30)

where Xn and Yn are Gaussian random variables, and the pa-
rameter 	 determines the circularity1 of the signal. For 	 =

�
2

2
the input is circular, while for 	 approaching 0 or 1 the signal is
highly non-circular. The output of the channel is computed by
first applying a linear filtering operation:

tn =
5�

k=1

h(k)sn�k+1 , (31)

where:

h(k) = 0.432
�

1 + cos
�

2�(k � 3)
5

	

�i
�

1 + cos
�

2�(k � 3)
10

	��
, (32)

for k = 1, . . . , 5. Then, the output of the linear filter goes
through a memoryless nonlinearity:

rn = tn + (0.15 � i0.1) t2n , (33)

1A random variable Z is circular if Z and Z exp {i
} have the same prob-
ability distribution for any angle
 . Roughly speaking, non-circular signals are
harder to predict, requiring the use of widely linear techniques when using
standard linear filters [8].

and finally it is corrupted by adding white Gaussian noise in
order to get the final signal �rn . The variance of the noise is
selected to obtain a signal-to-noise ratio (SNR) of about 13 dB.
The input to the neural network is an embedding of channel
inputs:

x = [sn�L+1 , sn�L+2 , . . . , sn]T , (34)

with L = 5, and the network is trained to output �rn . We generate
2000 samples of the channel, and we randomly keep 15% for
testing, averaging over 15 different generations of the dataset.
We compare the following algorithms:

� LIN: a standard linear filter [5] with complex-valued co-
efficients.

� 2R-NN: a real-valued neural network taking as input the
real and imaginary parts separately. For the activation func-
tions in the hidden layers, we consider either a standard
tanh or ReLUs.

� C-NN: complex-valued neural networks with fixed acti-
vation functions, including a split-tanh, a split-ReLU, the
AMP function in (13), or the complex ReLU in (16).

� ModReLU-NN: CVNN with adaptable activation func-
tions with ModReLU neurons as in (17). In this case, the
coefficients of the neurons are all initialized at 0.1 and later
adapted.

� Maxout: a CVNN where we use the non-parametric Max-
out activation function [29] in a split configuration.

� Proposed KAF-NN: CVNN with the split-KAF proposed
in Section IV. We empirically select D = 20 elements in
the dictionary sampled uniformly in [�2,+2].

� Proposed C-KAF-NN: CVNN with the fully complex
KAF proposed in Section V. In this case, we test either
the complex Gaussian kernel (26), or the independent ker-
nel with the real Gaussian kernel as base. We empirically
select D = 8.

All algorithms are trained by minimizing the mean-squared
error in (10) on random mini-batches of 40 elements. Following
[34], in this scenario we consider one hidden layer with 10
neurons (as more layers are not found to provide significant
improvements in performance). The size of the regularization
factor is empirically selected as 10�4 . Results in terms of mean
squared error (MSE) expressed in dBs are given in Figure 4, by
considering either 	 =

�
2

2 (circular input signal) or the more
challenging scenario 	 = 0.95 (non-circular signal).

As expected, results are generally lower for the non-circular
case, proportionally so for techniques that are not able to ex-
ploit the geometry of non-circular complex signals, such as non-
widely linear models and real-valued neural networks. However,
the proposed KAF-NN and C-KAF-NN are able to consistently
out-perform all other methods in both scenarios in a stable fash-
ion. Note that this difference in performance cannot be overcome
by increasing the size of the other networks, thus pointing to the
importance of adapting the activation functions also in the com-
plex case. Interestingly, the complex Gaussian kernel in (26)
results in a poor performance, similarly to the split-Maxout,
which is solved by using the independent one.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Fig. 4. Results for the first experiment, expressed in terms of MSE (dB). With a dashed line we divide the results of the proposed models.

Fig. 5. A plot of the complex-valued wind profile for the initial 500 samples of the wind time-series.

TABLE I
RESULTS (MEAN AND STANDARD DEVIATION FOR THE COEFFICIENT OF

DETERMINATION R2) IN THE WIND PREDICTION TASK. BEST RESULT IS

HIGHLIGHTED IN BOLD, SECOND-BEST RESULT IN UNDERLINED

B. Experiment 2 - Wind Prediction

For the second experiment, we consider a real-world dataset
for a task of wind prediction [48]. The dataset consists of

5000 hourly samples of wind intensity collected along two dif-
ferent axes (north axis and east axis). The dataset is provided
in three settings of wind regime, namely ‘low’, ‘medium’, and
‘high’, from which we select the highest, being the most chal-
lenging one. In order to construct a complex-valued signal, the
two samples for each hour are considered as the real and the
imaginary components of a single complex number (for more
motivation on the use of complex-valued information when deal-
ing with wind forecasting, see [18], [48]–[51]). A snapshot of
the absolute value and phase of the resulting signal is shown
in Fig. 5 for the initial 500 samples. We consider the task of
predicting both components of the wind for an 8-hour-ahead
horizon, starting from an embedding of the last 10 hours of
measurements. We select neural networks with 2 hidden layers
(as more hidden layers are not found to provide gain in perfor-
mance), and we optimize both the number of neurons and the
regularization factor on a held-out validation set. We test the
datasets on the last 500 components of the time-series, in terms
of the R2 coefficient of determination:

R2 = 1 �

�500

n=1
|yn � �yn |2

�500

n=1
|yn � fly|2

, (35)

where yn is the true value, �yn is the predicted value, and fly is
the mean of the true values computed from the test set. Positive

