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Privacy-Preserving Data Mining
for Distributed Medical Scenarios

Simone Scardapane, Rosa Altilio, Valentina Ciccarelli,
Aurelio Uncini and Massimo Panella

Abstract In this paper, we consider the application of data mining methods in

medical contexts, wherein the data to be analysed (e.g. records from different

patients) is distributed among multiple clinical parties. Although inference proce-

dures could provide meaningful medical information (such as optimal clustering

of the subjects), each party is forbidden to disclose its local dataset to a central-

ized location, due to privacy concerns over sensible portions of the dataset. To this

end, we propose a general framework enabling the parties involved to perform (in

a decentralized fashion) any data mining procedure relying solely on the Euclidean

distance among patterns, including kernel methods, spectral clustering, and so on.

Specifically, the problem is recast as a decentralized matrix completion problem,

whose proposed solution does not require the presence of a centralized coordinator,

and full privacy of the original data can be ensured by the use of different strate-

gies, including random multiplicative updates for secure computation of distances.

Experimental results support our proposal as an efficient tool for performing cluster-

ing and classification in distributed medical contexts. As an example, on the known

Pima Indians Diabetes dataset, we obtain a Rand-Index for clustering of 0.52 against

0.54 of the (unfeasible) centralized solution, while on the Parkinson speech database

we increase from 0.45 to 0.50.
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12.1 Introduction

Health care and biomedicine are two of the most prolific areas for the application of

data mining methods [15], with successful implementations ranging from clustering

of patients to rule extraction for expert systems, automatic diagnosis, and many oth-

ers. In this paper, we are concerned with one particular aspect of medical scenarios,

which hinders the use of standard machine learning techniques in practice. Specif-

ically, many medical databases are distributed in nature [13], i.e. different parties

may possess separate records on the process to be analysed. As an example, con-

sider the problem of training a classifier to perform automatic diagnosis of a specific

disorder (e.g. a cancer), starting from a set of standardized medical measurements.

In this case, different hospitals have access to historical training data relative to dis-

joint patients, and it would be highly beneficial to collect these separate sources in

order to train an effective classifier. At the same time, however, releasing medical

data to a centralized location (to perform training) generally goes against a number

of privacy concerns on sensible information, being subject to privacy attacks even if

identifiers are removed before releasing it [2]. So the question becomes, is it possible

to perform inference in a decentralized fashion (i.e., without the need for a central

coordinator), and without requiring the exchange of training data?

In the literature, this is known as the problem of ‘distributed machine learning’,

and many algorithms have been proposed to train specific classes of neural net-

works models, subject to the constraints detailed above. These include algorithms

for distributed training of support vector machines (SVMs) [4, 9], random-weights

networks [10, 11], kernel ridge regression [7], and many others, also considering

computing energy constraints [1]. Our aim in this paper is instead more general, and

starts from the known fact that a large number of learning techniques depend on

the input data only through the computation of pairwise Euclidean distances among

points. Examples of methods belonging to this category include kernel algorithms

(e.g. SVMs), spectral clustering, k-means, and many others. Thus, instead of solv-

ing the original distributed learning problem, we can focus on the equivalent prob-

lem of completing in a distributed fashion the full matrix of Euclidean distances

(EDM). Recasting the problem in this way allows us to leverage over a large number

of works on matrix completion and EDM completion [6], especially in the distributed

setting [3].

Particularly, we consider a distributed gradient-descent algorithm to this end,

originally proposed for SVM inference over networks [3]. The proposed algorithm

consists of two iterative steps, which are performed locally by every party (agent) in

the network. First, each agent performs a single gradient descent step with respect to

a locally defined cost function. Then, the new estimate of the EDM is averaged with

respect to the estimates of other agents connected to it, and the process is repeated

until convergence. Due to the way in which information is propagated, this kind of

iterative techniques go under the general name of ‘diffusion’ strategies [8]. Addi-

tionally, we reduce the computational complexity by the exploitation of the specific

structure of the EDM, by operating on a suitable factorization of the original matrix.
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Once all the agents have access to the global estimate of the EDM, many data

mining techniques can be applied directly (e.g. spectral clustering [14]), or by simple

in-network operations (e.g. SVMs), as we discuss subsequently. Additionally, if there

is the need of applying more than one technique, the same estimate can be reused

for all of them, making the framework particularly useful whenever data must be

used in an ‘exploratory’ fashion, without a particular predefined objective in mind.

In order to show the applicability of the framework, we present experimental results

for clustering of three well-known medical databases, showing that the solutions

obtained are comparable to that of a fully centralized implementation.

The rest of the paper is organized as follows. In Sect. 12.2 we provide our algo-

rithm for EDM completion. Since this requires the exchange of a small portion of

the dataset, we present in the subsequent section two efficient methods to ensure pri-

vacy preservation. Then, a set of experimental evaluations are provided in Sect. 12.4,

followed by some concluding remarks in Sect. 12.5.

12.2 Proposed Framework

Consider the application of a data mining procedure on a dataset of N examples

S =
(
𝐱i
)N
i=1 ∈ ℝd

, e.g. vectors to be suitably clustered. In a supervised setting, they

can also be supplemented by additional labels. We assume that the dataset S is not

available on a centralized location. Instead, it is partitioned over L agents (e.g. hospi-

tals), such that the kth agent has access to a dataset Sk and
⋃L

k=1 Sk = S. For general-

ity, we can fully describe the connectivity between the agents in the form of an L × L
connectivity matrix 𝐂, where Cij ≠ 0 if and only if agents i and j are connected. In

this paper, we assume that the network is connected (i.e., every agent can be reached

from any other agent with a finite number of steps), and undirected (i.e., 𝐂 is sym-

metric). Based on what we stated previously, we also assume that no coordinating

entity is available, and communication is possible only if two agents are directly

connected.

Suppose that the data mining procedure depends on the inputs 𝐱i only through

the computation of Euclidean distances among them (such as in the case of kernel

methods). In this case, the overall distributed data mining procedure can be recast

as the distributed computation of the Euclidean distance matrix (EDM) 𝐄, where

Eij =
‖‖‖𝐱i − 𝐱j

‖‖‖2. For unsupervised problems, knowledge of this matrix is generally

enough to solve the overall problem. In the supervised case, we would instead be left

with a distributed optimization problem where only labels are distributed, which can

be solved efficiently (see [3] for a fuller treatment on this aspect). To formalize this

equivalent problem, we note that with a proper rearrangement of patterns, the global

EDM 𝐄 can always be expressed as:



122 S. Scardapane et al.

𝐄 =
⎡
⎢
⎢
⎣

𝐄1 ? ?
? ⋱ ?
? ? 𝐄L

⎤
⎥
⎥
⎦
, (12.1)

where 𝐄k denotes the EDM computed only from the patterns in Sk. This structure

implies that the sampling set is not random, and makes non-trivial the problem of

completing 𝐄 solely from the knowledge of the local matrices. At the opposite, the

idea of exchanging the entire local datasets between nodes is unfeasible because of

the amount of data which would need to be shared. Starting from these considera-

tions, based on [3] we propose the following distributed procedure:

1. Patterns exchange: every agent exchanges a fraction p of the available Sk with its

neighbours. This is necessary so that the agents can increase the number of known

entries in their local matrices. How to ensure privacy in this step is described in

the following section.

2. Local EDM computation: each agent computes, using its original dataset and

the data received from its neighbours, an incomplete approximation ̂𝐄k ∈ ℝN×N

of the real EDM matrix 𝐄.

3. Entries exchange: the agents exchange a sample of their local EDMs ̂𝐄k with

their neighbours (similarly to step 1).

4. Distributed EDM completion: the agents complete the estimate ̃𝐄 of the global

EDM using the strategy detailed next.

To formalize this last step, define a local matrix 𝜴k as:

𝜴k =

{
1 if ̂Eij ≠ 0
0 otherwise

. (12.2)

We aim at finding a matrix ̃𝐄 such that the following (joint) cost function is mini-

mized:

min
̃𝐄∈EDM(N)

L∑

k=1
Jk( ̃𝐄) =

L∑

k=1

‖‖‖‖
𝜴k◦

(
̂𝐄k − ̃𝐄

)‖‖‖‖

2

F
, (12.3)

where ◦ denotes the Hadamard product, and EDM(N) is the set of EDMs of size

N × N. To solve problem (12.3) in a fully decentralized fashion, we use the algo-

rithm introduced in [3], which in turn derives from the framework of diffusion adap-

tation (DA) for optimization [8] and on previous works on EDM completion [6]. In

particular, we approximate the objective function in Eq. (12.3) by:

Jk(𝐕) =
‖‖‖‖
𝜴k◦

[
̂𝐄k − 𝜅

(
𝐕𝐕T

)]‖‖‖‖

2

F

k = 1,… ,L , (12.4)

where 𝜅(⋅) is the Schoenberg mapping, which maps every positive semidefinite

(PSD) matrix to an EDM, given by:
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𝜅(𝐄) = diag(𝐄)𝟏T + 𝟏diag(𝐄)T − 2𝐄 , (12.5)

such that diag(𝐄) extracts the main diagonal of 𝐄 as a column vector, and we also

exploits the known fact that any PSD matrix 𝐃 with rank r admits a factoriza-

tion {𝐃 = 𝐕𝐕T}, where 𝐕 ∈ ℝN×r
∗ = {𝐕 ∈ ℝN×r ∶ det (𝐕T𝐕) ≠ 0}. This allows to

strongly reduce the computational cost of our algorithm, as the objective function

is now formulated only in terms of the low-rank factor 𝐕. The diffusion gradient

descent for the distributed completion of the EDM is then defined by an alternation

of updating and diffusion equations in the form of [3]:

1. Initialization: All the agents initialize the local matrices 𝐕k as random N × r
matrices.

2. Update of V: At time n, the kth agent updates the local matrix 𝐕k using a gradient

descent step with respect to its local cost function:

̃𝐕k [n + 1] = 𝐕k[n] − 𝜂k[n]∇𝐕k
Jk(𝐕) . (12.6)

where 𝜂k [n] is a positive step-size. It is straightforward to show that the gradient

of the cost function is given by:

∇𝐕k
Jk(𝐕) = 𝜅

∗
{
𝜴k◦

◦
(
𝜅

(
𝐕k [n]𝐕T

k [n]
)
− ̂𝐄k

)}
𝐕k [n] , (12.7)

where 𝜅

∗(𝐀) = 2
[
diag (𝐀1] − 𝐀) is the adjoint operator of 𝜅(⋅).

3. Diffusion: In order to propagate information over the network, the updated matri-

ces are combined according to the mixing weights 𝐂 ∈ ℝL×L
:

𝐕k [n + 1] =
L∑

i=1
Cki

̃𝐕i [n + 1] . (12.8)

where Cki > 0 if and only if agents k and i are connected, in order to send infor-

mation only through neighbours.

The above process is repeated for a maximum of T iterations to ensure convergence

(see [8] for a general introduction on DA algorithms).

12.3 Techniques for Privacy Preservation

The algorithm in the previous section is extremely general, but its efficient imple-

mentation requires the distributed computation of a small subset of distances (step

1 in the algorithm). In this section, we show two techniques which are able to pre-

serve privacy (i.e., avoid the exchange of the original data), during this phase.
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The first is the random projection-based technique developed in [5]. Suppose that

both agents agree on a projection matrix 𝐑 ∈ ℝm×d
, with m < d, such that each entry

Rij is independent and chosen from a normal distribution with mean zero and vari-

ance 𝜎

2
. We have the following lemma:

Lemma 1 Given two input patterns 𝐱i, 𝐱j, and the respective projections:

𝐮i =
1

√
m𝜎

𝐑𝐱i, and 𝐮j =
1

√
m𝜎

𝐑𝐱j , (12.9)

we have that:
𝔼
{
𝐮Ti 𝐮j

}
= 𝐱Ti 𝐱j . (12.10)

Proof See [5, Lemma 5.2].

In light of Lemma 1, exchanging the projected patterns instead of the original ones

allows to preserve, on average, their inner product. A thorough investigation on the

privacy-preservation guarantees of this protocol can be found in [5]. Additionally, we

can observe that this protocol provides a reduction on the communication require-

ments of the application, since it effectively reduces the dimensionality of the pat-

terns to be exchanged by a factor m∕d.

The second technique is the k-anonymity presented in [12]. In this case, we

assume that the pattern 𝐱i is composed by both quasi-identifier fields (e.g., age) and

sensible fields (e.g., diagnosis). We say that a dataset is k-anonymous if, for any

pattern, there exist at least k − 1 other patterns with the same quasi-identifiers. It is

possible to preserve k-anonymity by performing what is called “generalization” on

the dataset [12], wherein the quasi-identifiers are binned in a set of Q predefined

bins, and only the information on the corresponding bins is included in the dataset.

Different values for Q correspond to different privacy values for k, with an inverse

relation [12]. In this paper, we only wish to analyse the influence of this operation on

our framework. For this reason, we choose to perform generalization artificially on

the full dataset, while a decentralized implementation would require a sophisticated

procedure going outside the scope of the paper.

12.4 Experimental Results

12.4.1 Experimental Setup

In this section, we evaluate the performance of the proposed algorithm for decen-

tralized spectral clustering [14] with the privacy-preserving protocols described in

Sect. 12.3. Note that spectral clustering can be achieved directly with the use of the
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Table 12.1 Detailed description of each dataset

Dataset Features Instances Classes

Pima Indians Diabetes 8 769 2

Breast Cancer Wisconsin 32 569 2

Parkinson Speech 26 1040 6

EDM, so no additional distributed step is necessary after completing the matrix. We

consider three different (medical) public datasets available on the UCI repository,
1

a schematic description of which is given in Table 12.1. The number of attributes is

always greater than three and depends on the specific features of the dataset. In all

cases, for clustering the optimal solution is known beforehand for testing purpose.

Below we add some additional information on each dataset.

∙ Pima Indians Diabetes Dataset: It is a classification dataset composed by 768

instances. The task is to identify whenever the tests are positive for diabetes or

negative. Eight attributes are used for this purpose.

∙ Breast Cancer Wisconsin Dataset: It is a binary classification dataset of 569

instances composed by 32 attributes. The features describe the characteristics of

the cell nuclei present in the image. The task is to identify the correct diagnosis

(M = malignant, B = benign).

∙ Parkinson Speech Dataset: The dataset contains data of 20 Parkinson’s Disease

patients (PD) and 20 healthy subjects for which multiple types of sound recording

are taken. Globally 1040 instances composed by 26 attributes are used to identify

the correct type of sound recording (6 in total).

Five different runs of simulation are performed for each dataset which is preven-

tively normalized between−1 and 1 before the experiments and randomly partitioned

among the agents. A network of 7 agents is considered, where every pair of nodes is

connected with a fixed probability p = 0.5 according to the so-called “Erdos-Rènyi

model”. The only requirement is that the graph is connected. We compare the fol-

lowing strategies:

∙ Centralized: this simulates the case where a dataset is collected beforehand on a

centralized location (for comparison).

∙ No-privacy: the dataset is used with no privacy protocol applied to the data;

∙ Randomization protocol: the privacy of the data in step 1 is preserved by com-

puting the distance on the projected patterns according to (12.9); parameter d is

chosen in k = [2,… , 8] to minimize RMSE;

∙ K-anonymity: the privacy of the data is preserved by generalization on the quasi-

identifiers of the dataset. We use 4 bins for each quasi-identifier.

1
https://archive.ics.uci.edu/ml/datasets.html.

https://archive.ics.uci.edu/ml/datasets.html
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All experiments are carried out using MATLAB R2013b on a machine with Intel

Core i5 processor with a CPU @ 3.00 GHz with 16 GB of RAM. All parameters of

the algorithms are set according to [3].

12.4.2 Results and Discussion

We begin by evaluating the results of the framework with the randomization pro-

cedure. Three quality indexes are computed for both the privacy-preserving pro-

tocols and the privacy-free algorithm, namely the Rand Index, the Falks-Mallows

index (F-M Index) and the F-measure. All of the indexes range in [0, 1], with 1 indi-

cating a perfect correlation between the true label of the cluster and the output of

the clustering algorithm, and 0 the perfect negative correlation. In Table 12.2 we

report the mean and the standard deviation of each quality index averaged over 10

k-means evaluations and over the different agents in the distributed case. The best

result for each index is highlighted in bold. The results of the three approaches are

reasonably aligned; for all of the datasets they are very similar and in some cases the

algorithm with privacy-preservation outperforms the traditional one. For evaluating

the k-anonymity, we use the Pima Indians Diabetes Dataset described in Sect. 12.4,

where the first and the eighth feature, that are respectively the number of pregnancies

and the age of the subject, are used as quasi-identifiers. In Table 12.3 we computed

the three quality indexes for the k-anonymity protocol, the randomization and the

no-privacy transformation strategy. As shown in Table 12.3, we can obtain a com-

parable performance with respect to the privacy-free algorithm, additionally in the

k-anonymity protocol the results are even better.

Table 12.2 Experimental results for the randomization. We show the average and the standard

deviation of the indexes. Best results for each algorithm are highlighted in bold

Dataset Algorithm F-Measure Rand-Index F-M Index

Pima Indians

Diabetes

Centralized 0.511 ± 0.000 0.542 ± 0.005 0.721 ± 0.014

No-privacy 0.682 ± 0.106 0.505 ± 0.000 0.711 ± 0.000

Randomization 0.679 ± 0.050 0.523 ± 0.004 0.723 ± 0.003
Breast Cancer

Wisconsin

Centralized 0.785 ± 0.000 0.543 ± 0.004 0.728 ± 0.004

No-privacy 0.772 ± 0.330 0.624 ± 0.169 0.779 ± 0.086

Randomization 0.609 ± 0.389 0.682 ± 0.106 0.815 ± 0.041
Parkinson Speech Centralized 0.665 ± 0.001 0.450 ± 0.000 0.705 ± 0.000

No-privacy 0.674 ± 0.0.047 0.504 ± 0.000 0.710 ± 0.000
Randomization 0.672 ± 0.027 0.501 ± 0.003 0.708 ± 0.002



12 Privacy-Preserving Data Mining for Distributed Medical Scenarios 127

Table 12.3 Experimental results for the k-anonymity. We show the average and the standard devi-

ation of the F-Index, Rand Index, F-M Index for the Randomization, k-anonimity and privacy-free

protocols. Best results for each algorithm are highlighted in bold

Dataset Algorithm F-Measure Rand-Index F-M Index

Pima Indians

Diabetes

No-privacy 0.682 ± 0.106 0.505 ± 0.000 0.711 ± 0.000

Randomization 0.679 ± 0.050 0.523 ± 0.004 0.723 ± 0.003

K-anonymity 0.779 ± 0.167 0.561 ± 0.031 0.749 ± 0.021

12.5 Conclusion

In this paper, we presented a general framework for performing distributed data min-

ing procedures on medical scenarios. The algorithms rely on the distributed compu-

tation of a matrix of distances, which is obtained via an innovative gradient descent

procedure. Preliminary results on a clustering application show the feasibility of the

approach, which is able to reach almost-optimal performance with respect to a fully

centralized implementation. Additionally, we have investigated two different tech-

niques allowing to preserve privacy even during the exchange of patterns among

agents. Future research direction will involve designing more efficient procedures

for the distributed computation of the EDM, together with an analysis of the differ-

ent customizations of the framework for multiple algorithms.
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