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Abstract—Over the last years, automatic music classification
has become a standard benchmark problem in the machine
learning community. This is partly due to its inherent difficulty,
and also to the impact that a fully automated classification system
can have in a commercial application. In this paper we test the
efficiency of a relatively new learning tool, Extreme Learning
Machines (ELM), for several classification tasks on publicly
available song datasets. ELM is gaining increasing attention, due
to its versatility and speed in adapting its internal parameters.
Since both of these attributes are fundamental in music classifi-
cation, ELM provides a good alternative to standard learning
models. Our results support this claim, showing a sustained
gain of ELM over a feedforward neural network architecture.
In particular, ELM provides a great decrease in computational
training time, and has always higher or comparable results in
terms of efficiency.

I. INTRODUCTION

The increased availability of musical content and user-
generated annotations associated to that content has made
Automatic Music Retrieval (AMR) a tool of fundamental
importance for music applications. As an example Spotify1,
one of the biggest web applications for music streaming,
announced last year to have reached an overall catalog of more
than 20 million songs. Selecting songs from this database to
provide a good experience to the end users results extremely
challenging. AMR is hence the problem of efficiently retriev-
ing songs that may be of interest to the end users depending
on a given set of predefined criteria.

Automatic Music Classification (AMC) is one of the main
problems in AMR. Clearly, as long as we are able to correctly
classify a set of songs, we can use the resulting groups as a tool
to satisfy a user-defined query. Each song may be classified
according to several dimensions of interest, including genre,
perceived mood, artist, presence of a given instrument, and
several others. Fu et al. [1] provides an interesting overview
of the field, by reviewing most of the relevant papers and
techniques. Despite all the efforts, however, results are still
far from being optimal, due to the inherent difficulty of the
problem. Consider for example the following aspects:

1) A standard audio file comprises several thousands of
samples, subdivided in one, two or more channels.
Despite there exists a large set of possible features
that can be extracted from a single track, it is a
difficult task to select an optimal subset with respect

1https://www.spotify.com/

to the task at hand. We delve into this point in more
detail in Section II.

2) In some cases, the task may be challenging also for a
human expert, due to the high degree of subjectivity
and required knowledge involved. This is evident, for
example, in the case of efficient genre classification.

3) Moreover, good accuracy may require large databases
of thousands of songs. This results in several giga-
bytes of data to be elaborated, hence imposing a
strong computational effort for the training of the
learning models.

All these aspects are worsened when we include in our
data user-generated content relative to each song. Consider
again Spotify: being a social website, each track is typically
annotated with genre, artist, tags and other related information
by many users of the application. Moreover, data from several
websites may be easily retrieved and aggregated using the
provided programming interfaces. Overall, this amount in an
extremely large mass of information on which efficient data
mining is challenging. These reasons are making AMC tasks
an interesting benchmark for machine learning tools. For
example the MIREX challenge [2] has seen a constant growth
over the last years, and today comprises more that fifteen
different tasks regarding AMC.

In this paper we test Extreme Learning Machines (ELM)
[3] on several audio-related benchmarks. ELM is a relatively
new learning technique that we believe of great interest for
audio classification. In particular, ELM models are highly
versatile (providing a unified solution for both multi-class
classification and regression), and are much faster to train than
standard models such as neural networks. The main idea of
ELM is projecting the original input into an highly dimensional
feature space, where a linear model is subsequently applied.
The peculiarity is that this new space is fully fixed before
observing the data, hence the actual learning consist of a
simple linear regression that can be computed efficiently in
closed form.

At this time, we are aware of only two works that have
used ELM for music classification. In [4], ELM is applied
to the problem of genre classification, on a author-generated
dataset. Out of nine tests, ELM has a greater average accuracy
than a standard Support Vector Machine. Then, in [5] the
authors tested ELM for the classification of Han Chinese
folk songs, together with a novel musical encoding method
they call MFDMap. However, no comparisons are made with
other classifiers. Thus, no work has been done up to now
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to test and compare ELM on standard musical benchmarks,
which is the main subject of this paper. In particular, ELM
is tested on five publicly available datasets, for a total of
six experiments comprising four different AMC tasks (genre
classification, mood classification, music/speech discrimina-
tion and year recognition). Results are highly promising. As
can be expected, in all cases they show a strong decrease in
the computational time required for training with respect to
a standard neural network model. Moreover, this is obtained
whilst scoring higher or comparable results in term of accuracy.

The rest of the paper is organized as follows: in Section II
we formulate the problem of automatic music classification.
Section III is devoted to a brief overview of ELM theory.
Section IV details all the experiments. Then, we conclude on
Section V, where we also provide some final remarks.

II. AUTOMATIC MUSIC CLASSIFICATION

Automatic classification [6] is the problem of retrieving an
unknown relation between an input space X and an output
space Y , where Y contains only finitely many elements. The
only information we have is contained in a dataset of N
examples {xi,yi}Ni=1 of the relation, that we call the training
set. The algorithm is generally tested on a second, independent
dataset that we call the testing set.

Considering the case of mono-channel encoding, a song
can be described by a vector of amplitudes of the form:

s = [s[1], . . . , s[n]]T

However, this raw format is seldom used for classification
purposes due to its high dimensionality and low information
content. In general, a d-dimensional vector of features x ∈ Rd,
is extracted from each song and used as input for the classi-
fication step. A non-comprehensive list of possible features
includes:

• Spectral features such as Spectral Centroid, Spectral
Rolloff and others.

• Further elaborations of the spectral features, includ-
ing for example Mel-frequency cepstral coefficients
(MFCC) [7].

• Temporal features, typically constructed starting from
statistics of different orders of the original signal
(mean, variance...).

• Higher-level features, including descriptors of pitch
and rhythm.

• Meta-information on the song, such as the genre, the
artist or the year of release.

• User-generated tags. This tags may also overlap with
the meta-information described before.

We already stated in Section I that the problem of choosing
an optimal set of features from those listed above is not
trivial. Since we restrict ourselves to standard benchmarks, in
this paper we do not discuss further this issue and refer the
interested reader to [1], in particular Section II.
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Fig. 1. ELM basic structure.

The output space Y contains all the possible labellings of
a song. For example, in a genre classification task Y may
be comprised of the labels {rock, pop, classical}. In some
problems an input vector may belong to more than one label
(e.g. automatic tagging). In this case, a simple solution is to
consider each label as a separate binary classification task.

In the case of M disjoint classes, they can be encoded as an
M -dimensional binary vector y = {0, 1}M , with yi = 1 when
the input is of class i. This is known as dummy encoding of
the output and will be used extensively in our experiments.

III. EXTREME LEARNING MACHINES

An Extreme Learning Machine (ELM) is a model of the
form [3]:

f(x) =
L∑

i=1

hi(x)βi = hT (x)β (1)

where h(x) = [h1(x), . . . , hL(x)]
T is called the ELM feature

vector, and β represents the vector of expansion coefficients.
Equation (1) is equivalent to a two-layered network, where the
input is first projected to an L-dimensional space, over which
a linear combination is performed. This architecture is shown
in more detail in Fig. 1.

The ELM feature vector is similar to the hidden layer
of a standard feedforward neural network. It is, however,
fully fixed in advance, hence it has no free parameters to be
tuned. To construct this space, we can perform an operation of
randomization. Consider a family of functions g(x,θ),x ∈ X ,
indexed by the parameter vector θ. If we draw θ L times
according to a uniform probability distribution, the resulting
functions form exactly a feature space as in (1). The main
result of ELM theory (see Huang et al. [3]) is that almost
any nonlinear, piecewise continuous function can be used in
such a way, granting the resulting network with universal
approximation capability.

In this work we consider the original implementation of
ELM [8], where the optimal vector of expansion coefficients
is found by solving:

minimize ‖Hβ −Y‖22 and ‖β‖2 (2)

where we defined the hidden matrix H = [h(x1), . . . ,h(xN )]
and the output matrix Y = [y1, . . . ,yN ]T . Choosing the
solution of minimum norm has several justifications, and has
solid theoretical roots in neural network theory [6]. Solution
to (2) is found by:
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β = H†Y (3)

where H† is the Moore-Penrose inverse of H. There exists
several methods to compute H†. For example, whenever HTH
is non-singular, we have H† = (HTH)−1HT .

Note that a more general formulation exists [3], where
the expansion coefficient is found by solving a regularized
optimization problem:

minimize
β

1

2
‖β‖22 +

C

2

N∑

i=1

ζ2
i

subject to hT (xi)β = yi − ζi, i = 1, . . . , N.

(4)

where each ζi, i = 1, . . . , N measure the error between
desired and predicted output. However, for simplicity we do
not consider this formulation here. As a final remark, we note
that a binary classifier can be easily constructed from ELM by
considering the thresholded output:

f ′(x) = sign(f(x)) (5)

While a multi-class classifier using the dummy encoding
described in Section II is constructed as:

f ′(x) = arg max
i∈1,...,M

fi(x)

IV. EXPERIMENTAL RESULTS

We tested ELM on several music-related, publicly available
benchmarks. As a baseline algorithm we used a standard
feedforward neural network [6]. Optimal parameters for the
neural network were found by replicating the experiments in
the original papers describing the datasets to obtain comparable
results. Parameters for the ELM, instead, were found by
cross-validating on an independent portion of the dataset. All
simulations were performed by MATLAB 2012a, on an Intel
i3 3.07 GHz processor at 64 bit, with 4 GB of RAM available,
and each result is averaged over 100 runs. The neural network
is constructed using the Neural Network Toolbox of Matlab
and trained using standard gradient descent backpropagation.
A sigmoid activation function was used to construct the ELM
feature space:

g(a,x, b) =
1

1 + e−(ax+b)
(6)

All the experiments are summarized in Table I, where the
accuracy is provided together with the average training time in
brackets (except for the fourth experiment where the average
root mean-square error is provided). Results are consistent
between each experiment, showing that ELM achieves a com-
parable or higher accuracy than the standard neural network
but is extremely faster in training. Each experiment is detailed
in the following.

A. Music/Speech Discrimination

The first experiment is on automatic discrimination of
music/speech, taken from the popular dataset GTZAN [9].
It consists of 120 tracks, each 30 seconds long, equally
subdivided in the two classes. Tracks are 16-bit audio files in
.wav format encoded in mono. As input vector we used a set
of 13 Mel-frequency cepstral coefficients (MFCC) extracted
using the MIR Toolbox2. The choice is a standard one, since
MFCC coefficients are known to perform well on speech
discrimination.

Data is randomly split into 66% for the training set and the
remaining 34% for the testing set. As can be seen from the
first row of Table I, ELM has a marginal advantage in terms
of accuracy, but is two orders of magnitude faster in training.

B. Genre Classification (Dortmund)

In a second experiment, we considered the problem of
genre classification. The dataset used here is the Dortmund
dataset (also known as garageband) [10]. The input to the
classifier consists of 49 features extracted according to the
search method detailed in [11]. There is a total of 1886
songs subdivided into 9 possible classes (alternative, blues,
electronic, folkcountry, funksoulrnb, jazz, pop, raphiphop and
rock). The songs were randomly split into 80% for training and
20% for testing. Missing values were replaced with the average
value for the attribute relative to all the other examples in the
class.

The second row of Table I shows the results. ELM obtains
a far more efficient classification accuracy with respect to the
neural network (54 % instead of 48 %). Moreover, it took in
average half a second to train compared to the 3 seconds and
half for the neural network.

C. Genre Classification (LMD)

The third experiment is again of genre classification, but
with an harder dataset. In particular, we used the Latin Music
Database [12]. It consists of features extracted from 3160
music pieces belonging to one of ten possible classes: Tango,
Bolero, Batchata, Salsa, Merengue, Ax, Forr, Sertaneja, Gacha
and Pagode. The features are extracted from the 30 seconds in
the middle of each piece. They are divided into three groups:
Timbral Texture, Beat Related and Pitch Related (see the
original paper and [9] for more details).

We used the same 10 splits as in the original paper and
report our results in the third row of Table I. Here the
classification accuracy is equivalent in the two cases (60 %).
Again, the difference in training time is always of two orders
of magnitude.

D. Year/Decade Recognition

The fourth and fifth experiments are a non conventional
task, namely year recognition of a song. The dataset that we
used is the YearPredictionMSD from the UCI repository3,
which is itself a subset of the Million Song Dataset [13].

2https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/
mirtoolbox

3http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
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Experiment Neural Net ELM

Music/Speech (GTZAN) 75 % (0.38 sec.) 76 % (0.0076 sec.)

Genre Recognition (DORTMUND) 48 % (3.59 sec.) 54 % (0.54 sec.)

Genre Recognition (LMD) 60 % (16.05 sec.) 60 % (0.27 sec.)

Year Recognition (UCI) 2.6 (1099.91 sec.) 2.6 (11.51 sec.)

Decade Recognition (UCI) 61 % (45.74 sec.) 62 % (9.95 sec.)

Mood Recognition (CAL500) 76 % (0.85 sec.) 75 % (0.011 sec.)

TABLE I. RESULTS OF THE EXPERIMENTS.

The input is composed of 90 attributes regarding the timbre
extracted from each song. The output is the release year of the
song ranging from 1922 to 2011.

In a first experiment, to simplify the problem, we consid-
ered only songs ranging from 2000 to 2011. We selected the
first 10000 for training and the last 1000 for testing. Differently
from all the other experiments, we treat the problem as a
regression one (i.e., with a single continous valued output).
In the fourth row of Table I we show the average root-mean
square error (RMSE) computed as:

RMSE(S) =

√√√√ 1

|S|

|S|∑

i=1

(yi − f(xi))2 (7)

Performance are similar, but the difference in training time is
notable (several minutes against ten seconds). Note, however,
that the RMSE remains high, with an average error of more
than two years on the prediction.

In the fifth experiment we eased the task by considering
only the release decade of the song, and results are presented
in the fifth row of Table I. Here the task was treated again
as a classification task with a dummy encoding on the decade.
Results are comparable with the others. With respect to the pre-
vious experiment, however, backpropagation converges faster
here.

E. Mood Recognition

The last experiment is on mood recognition. The dataset
we used is the CAL500 dataset [14], composed of 500 songs
of western music. Each song is annotated with several tags
taken from 135 musical-related concepts, including genre,
vocal characteristics and mood. Tags were assigned by several
students, and then chosen on the basis of a majority vote.

As input to our system we considered the mean value of
the 59 Dynamic MFCC features present in the dataset. We then
tested ELM on 36 different binary classification tasks, one for
each tag associated to a mood. There are a total of 18 possible
moods, and for each one its corresponding negation is also
present. For example the first two tags are Angry/Agressive
and NOT Angry/Agressive.

The results averaged over the 36 tasks are presented on
the last row of Table I. They are in line with the rest, with a

comparable accuracy and a significant lower training time for
the ELM model.

V. CONCLUSIONS

We tested an Extreme Learning Machine (ELM) on several
benchmarks related to audio classification problems. In all of
them, the ELM performed well with respect to a standard
feedforward neural network, achieving a higher or comparable
accuracy with a significantly faster training time.

It is clear that a highly specialized classifier built on a
neural network (for example using Gaussian Mixture Models
or ensemble of classifiers) may outperform our results on each
of the dataset that we considered. However, due to our results,
we believe that ELM can provide a good basis for crafting
new models to perform automatic music classification. To this
end, we plan to provide in a future work a comparison of a
specialized ELM on the full Million Song Dataset database
[13].
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